已知向量AB=(1+tanx,1-tanx),AC=(sin(x-π4),sin(x+π4),则AB与AC的关系为()A.夹角为锐角B.夹角为钝角C.垂直D.共线-数学

题目简介

已知向量AB=(1+tanx,1-tanx),AC=(sin(x-π4),sin(x+π4),则AB与AC的关系为()A.夹角为锐角B.夹角为钝角C.垂直D.共线-数学

题目详情

已知向量
AB
=(1+tanx,1-tanx),
AC
=(sin(x-
π
4
),sin(x+
π
4
),则
AB
AC
的关系为(  )
A.夹角为锐角B.夹角为钝角C.垂直D.共线
题型:单选题难度:中档来源:不详

答案

AB
AC
=(1+tanx)sin(x-class="stub"π
4
)+(1-tanx)sin(x+class="stub"π
4
)

=(class="stub"sinx
cosx
+1)[
2
2
(sinx-cosx)]+
(1-class="stub"sinx
cosx
)[
2
2
(sinx+cosx)]

=
2
2
(sinx+cosx)(sinx-cosx)
cosx
+
2
2
(cosx-sinx)(sinx+cosx)
cosx

=
2
2cosx
[(sinx+cosx)(sinx-cosx)
+(sinx+cosx)(cosx-sinx)]
=0
AB
AC

故选:C

更多内容推荐