如图1,以△ABC的边AB,AC为腰向外作等腰三角形ABE和ACD,且AB=AE,AC=AD,M为BC边的中点,MA的延长线交DE于N(1)当∠BAC=∠BAE=∠CAD=90°时,线段AM线段DE的

题目简介

如图1,以△ABC的边AB,AC为腰向外作等腰三角形ABE和ACD,且AB=AE,AC=AD,M为BC边的中点,MA的延长线交DE于N(1)当∠BAC=∠BAE=∠CAD=90°时,线段AM线段DE的

题目详情

如图1,以△ABC的边AB,AC为腰向外作等腰三角形ABE和ACD,且AB=AE,AC=AD,M为BC边的中点,MA的延长线交DE于N
(1)当∠BAC=∠BAE=∠CAD=90°时,线段AM线段DE的关系是(    )。
(2)如图2,当∠BAC≠90°时,探究线段AM与线段DE的关系。
(3)如图3,当∠BAC≠90°时,∠BAE=岚,∠CAD=(180﹣а)°,则线段DE与AM的大小关系怎样?其夹角∠DNM是多少?请给出证明.
题型:解答题难度:偏难来源:湖北省期中题

答案

解:(1)DE=2AM且AM⊥DE。
理由如下:
∵AB=AE,∠BAC=∠BAE=∠CAD=90°,AC=AD,
∴△ABC≌△AED(SAS),
∴BC=ED,∠ABM=∠AEN,
∵M为BC边的中点,
∴BC=2AM,
∴DE=2AM;
∴AM=BM=CM,
∴∠ABM=∠BAM,
∴∠BAM=∠AEN,
∵∠BAM+∠EAN=90°,
∴∠AEN+∠EAN=90°,
∴∠ANE=90°,
∴AM⊥DE;
即DE=2AM,AM⊥DE;
(2)DE=2AM且AM⊥ED。理由如下:
延长AM到K,使MK=AM,连BK,则ABKC是平行四边形,
∴AC=BK,∠ABK+∠BAC=180°,
∵∠DAC=∠EAB=90°,
∴∠DAE+∠BAC=180°,
∴∠ABK=∠DAE,
又∵BK=AD,AB=AE,
∴△ABK≌△EAD(SAS),
∴AK=DE,∠BAK=∠AED
∴DE=2AM,
∠AED+∠EAN=∠BAK+∠EAN=90°,
∴AM⊥DE,
即DE=2AM且AM⊥ED;
(3)DE=2AM,∠DNM=(180﹣а)°。理由如下:
延长AM到P,使MP=MA,连接BP
又∵BM=CM,∠BMP=∠CMA,
∴△BMP≌△CMA(SAS),
∴BP=AC=AD;∠BPM=∠CAM;
且∠PBM=∠ACM,
∴BP⊥AC,∠ABP+∠BAC=180°,
又∵∠BAE+∠CAD=а°+(180﹣а)°=180°,
∴∠DAE+∠BAC=180°,
∴∠ABP=∠DAE,
又∵BP=AD,AB=AE,
∴△ABP≌△EAD(SAS),
∴PA=DE,∠BPA=∠ADE=∠CAM,
∴DE=2AM,
∠DNM=180度﹣(∠ADE+∠DAN)=180度﹣(∠CAM+∠DAN)=∠DAC=(180﹣а)°
即E=2AM,∠DNM=(180﹣а)°。
故答案为:DE=2AM且AM⊥DE。

更多内容推荐