如图△ABC和△AEF中,AB=AC,AF=AE,∠BAC=∠EAF,FC,BE交于M,连接AM。①如图1,若∠BAC=∠EAF=90°,则∠AME=_________;②如图2,若∠BAC=∠EAF

题目简介

如图△ABC和△AEF中,AB=AC,AF=AE,∠BAC=∠EAF,FC,BE交于M,连接AM。①如图1,若∠BAC=∠EAF=90°,则∠AME=_________;②如图2,若∠BAC=∠EAF

题目详情

如图△ABC和△AEF中,AB=AC,AF=AE,∠BAC=∠EAF,FC,BE交于M,连接AM。
①如图1,若∠BAC=∠EAF=90°,则∠AME= _________
②如图2,若∠BAC=∠EAF=60°,则∠AME= _________
③如图3,若∠BAC=∠EAF=α,则∠AME= _________ ,请证明你的结论。
题型:解答题难度:中档来源:湖北省月考题

答案

解:①∵∠BAC=∠EAF,
∴∠FAC=∠EAB,
∵AB=AC,AF=AE,
∴△AFC≌△AEB,
∵∠ACF=∠ABE,
∴点A、B、C、M共圆,
∴∠AMB=∠ACB,而∠BAC=90°,
∴∠ACB=45°,
∴∠AME=180°-45°=135°,
故答案为135°;
②与①证明方法一样得到∠AMB=∠ACB,而∠BAC=60°,
∵∠ACB=60°,
∴∠AME=180°-60°=120°,
故答案为120°;
③∠AME=90°+α,
理由如下:∵∠BAC=∠EAF=α,
∴∠FAC=∠EAB,
又∵AB=AC,AF=AE,
∴△AFC≌△AEB,
∵∠ACF=∠ABE,
∴点A、B、C、M共圆,
∴∠AMB=∠ACB,
∵AB=AC,∠BAC=α,
∴∠ACB=(180°-α?)=90°-α,
∴∠AMB=90°-α,
∴∠AME=180°-(90°-α)=90°+α。

更多内容推荐