在△ABC中,AB=AC,D、E、F分别在BC、AB、AC边上,连接DE、EF、FD,∠EDF=∠B。(1)如图1,在△DEF中,DE=DF,且点D是BC的中点,则易证△BED≌△CDF,由此可得结论

题目简介

在△ABC中,AB=AC,D、E、F分别在BC、AB、AC边上,连接DE、EF、FD,∠EDF=∠B。(1)如图1,在△DEF中,DE=DF,且点D是BC的中点,则易证△BED≌△CDF,由此可得结论

题目详情

在△ABC中,AB =AC,D、E、F分别在BC、AB、AC边上,连接DE、EF、FD,
∠EDF=∠B。
(1)如图1,在△DEF中,DE=DF,且点D是BC的中点,则易证△BED≌△CDF,由此可得结论:BE= CD,BD= CF。
(2)如图2,在△DEF中,DE =DF,若点D不是BC的中点,那么BE=CD,BD=CF仍成立吗?若成立,请给出证明;若不成立,请说明理由。
(3)如图3,在△DEF中,DE≠DF,且点D不是BC的中点,那么BE=CD,BD=CF仍成立吗?若成立,请给出证明;若不成立,请写出BE、CD、BD、CF之间的关系,并说明理由。
题型:解答题难度:中档来源:河北省模拟题

答案

解:(2) BF= CD,BD= CF仍成立.          
证明:∵∠BED+∠EDB+∠EBD= 180°,      ∠EDF+ ∠EDB+ ∠CDF= 180°, ∠EDF= ∠EBD,     
∴∠BED= ∠CDF.     
在△BED和△CDF中,    
∵∠BED=∠CDF, ∠B= ∠C,ED= DF,    
∴△BED≌△CDF    
∴BE=CD,BD= CF.       
(3)不成立,BE·CF= BD·CD.       
 证明:由(2)可得,    在△BED和△CDF中,    
∵∠BED= ∠CDF, ∠B=∠C,    
∴△BED∽△CDF,    
   
 ∴BE·CF=BD·CD      

更多内容推荐