在数列{an}中,a1=1,an+1=2an+2n,(Ⅰ)设bn=an2n-1,证明:(Ⅰ)数列{bn}是等差数列;(Ⅱ)求数列{n2an}的前n项和Sn.-数学

题目简介

在数列{an}中,a1=1,an+1=2an+2n,(Ⅰ)设bn=an2n-1,证明:(Ⅰ)数列{bn}是等差数列;(Ⅱ)求数列{n2an}的前n项和Sn.-数学

题目详情

在数列{an}中,a1=1,an+1=2an+2n,(Ⅰ)设bn=
an
2n-1
,证明:
(Ⅰ)数列{bn}是等差数列;
(Ⅱ)求数列{
n2
an
}的前n项和Sn
题型:解答题难度:中档来源:不详

答案

(Ⅰ)证明:由an+1=2an+2nbn+1=
an+1
2n
=
2an+2n
2n
=
an
2n-1
+1=bn+1

又b1=a1=1,因此数列{bn}是首项为1,公差为1的等差数列
(Ⅱ)由(Ⅰ)得bn=1+(n-1)•1=n=
an
2n-1

an=n•2n-1
n2
an
=class="stub"n
2n-1

Sn=1+class="stub"2
2
+class="stub"3
22
+class="stub"4
23
+…+class="stub"n
2n-1
,…(1)

class="stub"1
2
Sn=class="stub"1
2
+class="stub"2
22
+class="stub"3
23
+class="stub"4
24
+…class="stub"n-1
2n-1
+class="stub"n
2n
,…(2)

(1)-(2)得class="stub"1
2
Sn=1+class="stub"1
2
+class="stub"1
22
+class="stub"1
23
+…+class="stub"1
2n-1
-class="stub"n
2n

=
1•[1-(class="stub"1
2
)
n
]
1-class="stub"1
2
-class="stub"n
2n
=2-(2+n)class="stub"1
2n

Sn=4-(2+n)class="stub"1
2n-1

更多内容推荐