已知fn(x)=(1+x)n.(1)若f11(x)=a0+a1x+a2x2+…+a11x11,求a1+a3+…+a11的值;(2)若g(x)=f6(x)+2f7(x)+3f8(x),求g(x)中含x6

题目简介

已知fn(x)=(1+x)n.(1)若f11(x)=a0+a1x+a2x2+…+a11x11,求a1+a3+…+a11的值;(2)若g(x)=f6(x)+2f7(x)+3f8(x),求g(x)中含x6

题目详情

已知fn(x)=(1+x)n
(1)若f11(x)=a0+a1x+a2x2+…+a11x11,求a1+a3+…+a11的值;
(2)若g(x)=f6(x)+2f7(x)+3f8(x),求g(x)中含x6项的系数;
(3)证明:
Cmm
+2
Cmm+1
+3
Cmm+2
+…+n
Cmm+n-1
=[
(m+1)n+1
m+2
]
Cm+1m+n
题型:解答题难度:中档来源:不详

答案

(1)f11(x)=(1+x)11=a0+a1x+a2x2+…+a11x11,①
考察(1-x)11展开式的项,与①式奇数项相同,偶数项互为相反数.
∴(1+x)11-(1-x)11=2(a1x+a3x3+…+2a11x11),
令x=1得 a1+a3+…+a11=
(1+1)11-011
2
=1024.
 (2)fn(x)=(1+x)n.展开式中含x6项为T7=Cn6x6,系数为Cn6.
g(x)中含x6项的系数等于C66+2C76+3C86=99.
证明:(3)设h(x)=(1+x)m+2(1+x)m+1+…+n(1+x)m+n-1(1)
则函数h(x)中含xm项的系数为Cmm+2×Cm+1m+…+nCm+n-1m
(1+x)h(x)=(1+x)m+1+2(1+x)m+2+…+n(1+x)m+n (2)
(1)-(2)得-xh(x)=(1+x)m+(1+x)m+1+(1+x)m+2+…+(1+x)m+n-1-n(1+x)m+n -xh(x)=
(1+x)m[1-(1+x)n]
1-(1+x)
-n(1+x)m+n

x2h(x)=(1+x)m-(1+x)m+n+nx(1+x)m+n
h(x)中含xm项的系数,即是等式左边含xm+2项的系数,
等式右边含xm+2项的系数为-Cm+nm+2+nCm+nm+1
=-
(m+n)!
(m+2)!(n-2)!
+
n(m+n)!
(m+1)!(n-1)!
=
-(n-1)+n(m+2)
m+2
×
(m+n)!
(m+1)!(n-1)1

=
(m+1)n+1
m+2
Cm+1m+n

所以Cmm+2×Cm+1m+…+nCm+n-1m=
(m+1)n+1
m+2
Cm+1m+n

更多内容推荐