若数列{an}对于任意的正整数n满足:an>0且anan+1=n+1,则称数列{an}为“积增数列”。已知“积增数列”{an}中,a1=1,数列{an2+an+12}的前n项和为Sn,则对于任意的正整

题目简介

若数列{an}对于任意的正整数n满足:an>0且anan+1=n+1,则称数列{an}为“积增数列”。已知“积增数列”{an}中,a1=1,数列{an2+an+12}的前n项和为Sn,则对于任意的正整

题目详情

若数列{an}对于任意的正整数n满足:an>0且anan+1=n+1,则称数列{an}为“积增数列”。已知“积增数列”{an}中,a1=1,数列{an2+an+12}的前n项和为Sn,则对于任意的正整数n,有

[     ]

A、Sn≤2n2+3
B、Sn≥n2+4n
C、Sn≤n2+4n
D、Sn≥n2+3n

题型:单选题难度:中档来源:0112 模拟题

答案

D

更多内容推荐