优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 在数列{an}中,a1=1,a2=2,且an+2-an=1+(-1)n,则S100=()。-高三数学
在数列{an}中,a1=1,a2=2,且an+2-an=1+(-1)n,则S100=()。-高三数学
题目简介
在数列{an}中,a1=1,a2=2,且an+2-an=1+(-1)n,则S100=()。-高三数学
题目详情
在数列{a
n
}中,a
1
=1,a
2
=2,且a
n+2
-a
n
=1+(-1)
n
,则S
100
=( )。
题型:填空题
难度:中档
来源:天津高考真题
答案
2600
上一篇 :
已知数列{an}的前n项和为Sn,且a
下一篇 :
已知数列{an}的前n项和Sn满足(
搜索答案
更多内容推荐
设数列{an}是首项为1,公比为3的等比数列,把{an}中每一项都减去2后,得到一个新数列{bn},{bn}的前n项和为Sn,对任意的n∈N+,下列结论正确的是[]A.bn+1=3bn且Sn=(3n-
已知数列{an}的前n项和Sn=10n-n2,又bn=|an|,求{bn}的前n项和Tn.-高二数学
已知数列{an}的通项公式为an=(-1)n-1(4n-3),求数列{an}的前100项的和.-高二数学
如果有穷数列a1,a2,a3,…,am(m为正整数)满足条件a1=am,a2=am-1,…,am=a1,即ai=am-i+1(i=1,2,…,m),我们称其为“对称数列”。例如,数列1,2,5,2,1
设C1,C2,…,Cn,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线y=x相切,对每一个正整数n,圆Cn都与圆Cn+1相互外切,以rn表示Cn的半径,已知{rn}为递增-高二数学
数列{an}中,a1=2,an+1=an+cn(c是不为0的常数,n∈N*),且a1,a2,a3成等比数列,(1)求数列{an}的通项公式;(2)若,求数列{bn}的前n项和Tn。-高三数学
已知在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足Sn2=an(Sn-),(Ⅰ)求Sn的表达式;(Ⅱ)设,求数列{bn}的前n项和Tn.-高三数学
已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn。(I)求an及Sn;(Ⅱ)令,求数列{bn}的前n项和Tn。-高三数学
已知数列{an}的前n项和Sn和通项an满足Sn=(1-an),(1)求数列{an}的通项公式;(2)若数列{bn}满足bn=nan,求证:b1+b2+…+bn<。-高三数学
()。-高二数学
数列{an}的通项公式为,若它的前n项和为8,则项数n=()。-高二数学
已知数列{an}的通项公式,其前n项和,则项数n为[]A.4B.5C.7D.6-高二数学
已知数列{an}满足a1=2,前n项和为Sn,an+1=,(1)若数列{bn}满足bn=a2n+a2n+1(n≥1),试求数列{bn}前3项的和T3;(2)(理)若数列{cn}满足cn=a2n,试判断
在数列{an}与{bn}中,a1=1,b1=4,数列{an}的前n项和Sn满足nSn+1-(n+3)Sn=0,2an+1为bn与bn+1的等比中项,n∈N*,(Ⅰ)求a2,b2的值;(Ⅱ)求数列{an
数列满足,。(1)求;(2)证明数列为等差数列;(3)求的前n项和Sn。-高一数学
用n个不同的实数a1,a2,…,an可得到n!个不同的排列,每个排列为一行写成一个n!行的数阵。对第i行,记,i=1,2,3,…,n!。例如:用1,2,3可得数阵如图,由于此数阵中每一列-高三数学
已知等差数列{an}的公差d不为0,设Sn=a1+a2q+…+anqn-1,Tn=a1-a2q+…+(-1)n-1anqn-1,q≠0,n∈N*,(Ⅰ)若q=1,a1=1,S3=15,求数列{an}的
数列{an}的通项为an=,若Sn=9,则项数n=()-高二数学
若,则S10等于[]A.B.C.D.-高二数学
数列的前n项和为[]A.B.C.D.-高二数学
数列1,1+2,1+2+22,1+2+22+23,…,1+2+22+…+2n-1的前n项和Sn等于[]A.2nB.2n-nC.2n+1-n-2D.n-2n-高二数学
设数列{an}满足a1=1,a2=2,an=(an-1+2an-2)(n=3,4,…)。数列{bn}满足b1=1,bn(n=2,3,…)是非零整数,且对任意的正整数m和自然数k,都有-1≤bm+bm+
用n个不同的实数a1,a2,…,an可得到n!个不同的排列,每个排列为一行写成一个n!行的数阵。对第i行,记,i=1,2,3,…,n!。例如:用1,2,3可得数阵如图,由于此数阵中每一列-高三数学
设数列{an}的通项公式为an=pn+q(n∈N*,p>0),数列{bm}定义如下:对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值.(Ⅰ)若p=,q=,求b3;(Ⅱ)若p=2,q=-1,
求和:=()。-高二数学
已知数列{an}的首项为1,对任意的n∈N*,定义bn=an+1-an,(Ⅰ)若bn=n+1,求a4;(Ⅱ)若bn+1bn-1=bn(n≥2),且b1=a,b2=b(ab≠0),(ⅰ)当a=1,b=2
已知集合Sn={X|X=(x1,x2,…,xn),xi∈{0,1},i=1,2,…,n}(n≥2),对于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Sn,定义A与B的差为A-B=(|a
设p,q为实数,α,β是方程x2-px+q=0的两个实根,数列{xn}满足x1=p,x2=p2-q,xn=pxn-1-qxn-2(n=3,4,…),(1)证明:α+β=p,αβ=q;(2)求数列{xn
若数列{an},{bn}满足anbn=1,且an=n2+3n+2,则数列{bn}的前10项之和为[]A.B.C.D.-高二数学
数列{an}前n项和为Sn,已知a1=,且对任意正整数m,n,都有am+n=am·an,若Sn<a恒成立则实数a的最小值为()。-高二数学
数列{an}的通项公式,若前n项和Sn=10,则项数n为[]A.11B.99C.120D.121-高二数学
求和:。-高二数学
已知数列{an}满足:a1=2t,t2-2an-1t+an-1an=0,n=2,3,4,…(其中t为常数,且t≠0),(Ⅰ)求证:数列为等差数列;(Ⅱ)求数列{an}的通项公式;(Ⅲ)设,求数列{bn
求和:Sn=x+2x2+3x3+…+nxn。-高二数学
设数列{an}满足a1+2a2=3,且对任意的n∈N*,点列{P(n,an)}恒满足,则数列{an}的前n项和Sn为[]A.n(n-)B.n(n-)C.n(n-)D.n(n-)-高二数学
等比数列{an}的各项均为正数,且a2a9=9,数列{bn}满足bn=log3an,则数列{bn}前10项和为[]A.10B.12C.8D.2+log35-高二数学
已知数列{an}的通项公式an=log2,设其前项和Sn,则使Sn<-5成立的自然数n[]A.有最小值63B.有最大值63C.有最小值31D.有最大值31-高二数学
在数列{an}中,已知a1=2,a2=4,且对任意n∈N+都有an+2=3an+1-2an。(1)令bn=an+1-an,求证数列{bn}是等比数列,并求出数列{bn}的通项公式;(2)求数列{an}
已知函数f(k)=|k-1|+|k-2|+…+|k-25|,k∈N+且1≤k≤25。(1)分别计算f(2)、f(5)、f(12)的值;(2)当k为何值时,f(k)取最小值?最小值为多少?-高二数学
已知数列{an}的前n项和Sn和通项an满足,(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn}满足bn=nan,求证:b1+b2+…+bn<。-高三数学
已知数列{an}的前n项和为Sn,满足Sn=2an-2(n∈N*),数列{bn}中b1=1,点P(bn,bn+1)在直线x-y+2=0上。(1)求数列{an}、{bn}的通项公式;(2)设cn=anb
已知数列的前n项和和通项满足(q是常数且)。(1)求数列的通项公式;(2)当时,试证明:;(3)设函数,,是否存在正整数m,使对任意n∈N*都成立?若存在,求出m的值,若不存在,说明-高一数学
已知数列{an}满足,,(1)试判断数列是否为等比数列,并说明理由;(2)设,求数列{bn}的前n项和Sn;(3)设,数列{cn}的前n项和为Tn,求证:对任意的n∈N*,.-高二数学
数列1,1+2,1+2+22,1+2+22+23,…1+22+23+…2n-1,…的前n项和Sn>1020,那么n的最小值是[]A.7B.8C.9D.10-高一数学
正整数按下列方法分组:{l},{2,3,4},{5,6,7,8,9},{10,1l,12,13,14,15,16},…,记第n组各数之和为An;由自然数的立方构成下列数组:{03,13},{13,23
已知,证明:。-高一数学
定义数列{an}:a1=1,当n≥2时,,其中,r≥0常数。(1)当r=0时,Sn=a1+a2+a3+…+an。①求:Sn;②求证:数列{S2n}中任意三项均不能够成等差数列。(2)求证:对一切n∈N
已知{an}是等比数列,a2=2,a5=,则a1a2+a2a3+…+anan+1等于[]A.16(1-4-n)B.16(1-2-n)C.(1-4-n)D.(1-2-n)-高二数学
已知数列{}的各项均为正数,为其前n项和,对于任意的n∈N*,满足关系式2=3-3。(I)求数列{}的通项公式;(Ⅱ)设数列{}的通项公式是,前n项和为Tn,求证:对于任意的正整数n,总有-高一数学
已知数列{an}中,a1=1前n项和为Sn,且点P(an,an+1)(n∈N*)在直线x-y+1=0上,则=[]A.B.C.D.-高二数学
返回顶部
题目简介
在数列{an}中,a1=1,a2=2,且an+2-an=1+(-1)n,则S100=()。-高三数学
题目详情
答案