优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> (本小题满分12分)一几何体的三视图如图所示,,A1A=,AB=,AC=2,A1C1=1,在线段上且=.(I)证明:平面⊥平面;(II)求二面角的余弦值.-高二数学
(本小题满分12分)一几何体的三视图如图所示,,A1A=,AB=,AC=2,A1C1=1,在线段上且=.(I)证明:平面⊥平面;(II)求二面角的余弦值.-高二数学
题目简介
(本小题满分12分)一几何体的三视图如图所示,,A1A=,AB=,AC=2,A1C1=1,在线段上且=.(I)证明:平面⊥平面;(II)求二面角的余弦值.-高二数学
题目详情
(本小题满分12分) 一几何体
的三视图如图所示,
,A
1
A=
,AB=
,AC=2,A
1
C
1
=1,
在线段
上且
=
.
(I)证明:平面
⊥平面
;
(II)求二面角
的余弦值.
题型:解答题
难度:中档
来源:不详
答案
(I)见解析(II)
方法一 :由三视图可知几何体是底面以
为直角,侧棱
垂直底面的三棱台
, ---------2分
(I)证明 ∵A1A⊥平面ABC,BC
平面ABC,
∴A1A⊥BC.
在Rt△ABC中,AB=
,AC=2,∴BC=
.
∵BD∶DC=1∶2,∴BD=
.又
=
=
,
∴△DBA∽△ABC,∴∠ADB=∠BAC=90°,
即AD⊥BC.
又A1A∩AD=A,∴BC⊥平面A1AD.
∵BC
平面BCC1B1,∴平面A1AD⊥平面BCC1B1. --------7分
(II)解 如图①,作AE⊥C1C交C1C于E点,连接BE,由已知得AB⊥平面ACC1A1,
∴AE是BE在平面ACC1A1内的射影.
由三垂线定理知BE⊥CC1,
∴∠AEB为二面角A—CC1—B的平面角. 图①
过C1作C1F⊥AC交AC于F点,
则CF=AC-AF=1,
C1F=A1A=
,∴∠C1CF=60°.
在Rt△AEC中,
AE=ACsin60°=2×
=
,
在Rt△BAE中,tan∠AEB=
=
=
,
∴cos∠AEB=
,
即二面角A—CC1—B余弦值为
-------12分
方法二 (I) 证明 如图②,建立空间直角坐标系,
则A(0,0,0),B(
,0,0),C(0,2,0),
A1(0,0,
),C1(0,1,
).
∵BD∶DC=1∶2,∴
=
,
∴D点坐标为
,
∴
=
,
=(-
,2,0),
=(0,0,
).
∵
·
=0,
·
=0,
∴BC⊥AA1,BC⊥AD.又A1A∩AD=A,
∴BC⊥平面A1AD.又BC
平面BCC1B1,
∴平面A1AD⊥平面BCC1B1.
(II)解 ∵BA⊥平面ACC1A1,取m=
=(
,0,0)为平面ACC1A1的法向量.
设平面BCC1B1的法向量为n=(x,y,z),
则
·n=0,
·n=0,
∴
∴x=
y,z=
,可取y=1,则n=
,
cos〈m,n〉=
=
,
即二面角A—CC1—B的余弦值为
.
上一篇 :
如图,已知长方体直线与平面所成
下一篇 :
在棱长为的正方体中,为棱的中点
搜索答案
更多内容推荐
如图,直角梯形ABCE中,,D是CE的中点,点M和点N在ADE绕AD向上翻折的过程中,分别以的速度,同时从点A和点B沿AE和BD各自匀速行进,t为行进时间,0。(1)求直线AE与平面CDE所成-高三数
已知四棱锥P-ABCD,底面是边长为1的正方形,侧棱PC长为2,且PC⊥底面ABCD,E是侧棱PC上的动点。(Ⅰ)不论点E在何位置,是否都有BD⊥AE?证明你的结论;(Ⅱ)求点C到平面PDB的距离;-
如图,在四棱锥中,底面是正方形,底面,,点是的中点,,且交于点.(I)求证:平面;(II)求二面角的余弦值大小;(III)求证:平面⊥平面.-高三数学
如图3:在空间四边形ABCD中,AC=AD,BC=BD,且E是CD的中点.(1)求证:平面ABE平面BCD;(2)若F是AB的中点,BC=AD,且AB=8,AE=10,求EF的长.-高一数学
(本小题满分12分)已知ABCD是矩形,,E、F分别是线段AB、BC的中点,面ABCD.(1)证明:PF⊥FD;(2)在PA上找一点G,使得EG∥平面PFD.-高三数学
(本小题满分12分)(注意:在试题卷上作答无效)四棱锥中,底面为矩形,侧面底面,,,。(Ⅰ)证明:;(Ⅱ)设与平面所成的角为,求二面角的大小。-高三数学
如图,直三棱柱ABC-A1B1C1中,底面是等腰直角三角形,AB=BC=,BB1=3,D为A1C1的中点,F在线段AA1上.(1)AF为何值时,CF⊥平面B1DF?(2)设AF=1,求平面B1CF与平
如图,在三棱锥中,⊿是等边三角形,∠PAC=∠PBC="90"º.(1)证明:AB⊥PC;(2)若,且平面⊥平面,求三棱锥体积.-数学
如图所示,一条直角走廊宽为2米。现有一转动灵活的平板车,其平板面为矩形ABEF,它的宽为1米。直线EF分别交直线AC、BC于M、N,过墙角D作DP⊥AC于P,DQ⊥BC于Q;若平板车要想顺-数学
在图中,M、N是圆柱体的同一条母线上且位于上、下底面上的两点,圆柱底面半径为1,高为2,若从M点绕圆柱体的侧面到达N,最短路程为-数学
圆锥的母线长为2,轴截面是等边三角形,则轴截面的面积是()A.B.C.D.-数学
如图,已知:在菱形ABCD中,∠DAB=60°,PA⊥底面ABCD,PA=AB=2,E,F分别是AB与PD的中点.(1)求证:PC⊥BD;(2)求证:AF//平面PEC;(3)求二面角P—EC—D的大
如图所示,平面ABC,CE//PA,PA=2CE=2。(1)求证:平面平面APB;(2)求二面角A—BE—P的正弦值。-高三数学
如图,若Ω是长方体ABCD-A1B1C1D1被平面EFGH截去几何体EFCHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正
如果一个几何体的三视图如图所示(单位长度:cm),8.则此几何体的表面积是()A.cmB.cmC.96cmD.112cm-数学
如图,ABCD-A1B1C1D1为正方体,则以下结论:①BD∥平面CB1D1;②AC1⊥BD;③AC1⊥平面CB1D1其中正确结论的个数是()A.0B.1C.2D.3-高三数学
如图所示:四棱锥P-ABCD底面一直角梯形,BA⊥AD,CD⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点.(1)证明:EB∥平面PAD;(2)若PA=AD,证明:BE⊥平面PDC;(3)当
如图,四边形ABCD是矩形,面ABCD,过BC作平面BCFE交AP于E,交DP于F,求证:四边形BCFE是梯形-数学
如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。求证:(1)PA∥平面BDE(2)平面PAC平面BDE(3)求二面角E-BD-A的大小。-数学
用一张长为8cm,宽为4cm的矩形硬纸卷成圆柱的侧面,求圆柱的轴截面的面积与底面积.-数学
长方体的对角线长是4,有一条棱长为1,那么该长方体的最大体积为A.B.C.D.-数学
一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”。在一个正方体中,由两个顶点确定的直线与顶点组成的平面(相同的平面算一个)构成的“正交线面对”的个数是-数学
如图,为正方形所在平面外一点平面,且分别是线段的中点。w.(I)求证:平面;(II)求证:平面平面;(III)求异面直线与所成角的大小。-数学
(本小题满分13分)如图,已知正方形ABCD和梯形ACEF所在的平面互相垂直,,CE//AF,(I)求证:CM//平面BDF;(II)求异面直线CM与FD所成角的大小;(III)求二面角A—DF—B的
已知球的半径为1,三点都在球面上,且每两点间的球面距离均为,则球心到平面的距离为-高三数学
如图,在四棱锥中,底面是矩形,已知.(1)证明:平面;(2)求异面直线PC与AD所成的角的大小;(3)求二面角的大小.-高三数学
如图,已知正方体ABCD-A1B1C1D1,AD1与A1D相交于点O.(1)判断AD1与平面A1B1CD的位置关系,并证明;(2)求直线AB1与平面A1B1CD所成的角.-高一数学
(本小题满分12分)如图,已知三棱锥A—BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形。(Ⅰ)求证:DM∥平面APC;(Ⅱ)若BC=4,AB=20,求三棱锥D—BC
如图,圆锥中,、为底面圆的两条直径,,且,,为的中点.(1)求圆锥的表面积;(2)求异面直线与所成角的正切值.-数学
有下列四个命题:①圆台的任意两条母线的延长线,可能相交,也可能不相交;②圆锥的母线都交于一点;③圆柱的母线都互相平行.其中正确的命题有____________.-数学
如图,在四棱锥P—ABCD中,PA⊥底面ABCD,∠,AB∥CD,AD=CD=2AB=2,E,F分别是PC,CD的中点.(Ⅰ)证明:CD⊥平面BEF;(Ⅱ)设,求k的值.-高三数学
如图,已知正三棱柱的底面边长是2,D是侧棱的中点,平面ABD和平面的交线为MN.(Ⅰ)试证明;(Ⅱ)若直线AD与侧面所成的角为,试求二面角的大小.-高三数学
已知正四棱柱中,点E为的中点,F为的中点。⑴求与DF所成角的大小;⑵求证:面;⑶求点到面BDE的距离。-高三数学
下面几何体的轴截面一定是圆面的是()A.圆柱B.圆锥C.球D.圆台-数学
如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.(Ⅰ)
一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是()-高三数学
(本小题满分13分)如图,四面体中,是的中点,,.(Ⅰ)求证:平面;(Ⅱ)求异面直线与所成角的大小;(Ⅲ)求二面角的大小.-高三数学
如图,一个圆锥的底面半径为2cm,高为6cm,其中有一个高为cm的内接圆柱.(1)试用表示圆柱的侧面积;(2)当为何值时,圆柱的侧面积最大.-数学
对于四面体ABCD,下列命题正确的是(写出所有正确命题的编号)。①相对棱AB与CD所在的直线异面;②由顶点A作四面体的高,其垂足是BCD的三条高线的交点;③若分别作ABC和ABD的边AB-高三数学
在三棱锥中,,.(1)求三棱锥的体积;(2)证明:;(3)求异面直线SB和AC所成角的余弦值。-高三数学
在棱长AB=AD=2,AA1=3的长方体AC1中,点E是平面BCC1B1上动点,点F是CD的中点.(Ⅰ)试确定E的位置,使D1E⊥平面AB1F;(Ⅱ)求二面角B1—AF—B的大小.-高三数学
A、B为球面上相异两点,则通过A、B两点可作球的大圆有()A.一个B.无穷多个C.零个D.一个或无穷多个-数学
如图,在四棱锥P—ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB,PB的中点.(I)求证:EF⊥CD;(II)求DB与平面DEF所成角的正弦值;(III)在平面PA
如图,在三棱锥中,∠=90°,,⊥.(Ⅰ)求证:⊥;(Ⅱ)求三棱锥的体积.-数学
如图所示,四棱锥PABCD底面是直角梯形,底面ABCD,E为PC的中点,PA=AD=AB=1.(1)证明:;(2)证明:;(3)求三棱锥BPDC的体积V.-数学
如图,已知正方形和矩形所在的平面互相垂直,,,是线段的中点.(Ⅰ)求三棱锥的体积;(Ⅱ)求证://平面;(Ⅲ)求异面直线与所成的角.-数学
在四棱锥中,,,底面,,直线与底面成角,点分别是的中点.(1)求二面角的大小;(2)当的值为多少时,为直角三角形.-高三数学
下列命题中,正确的是()A.球面上的四个不同点,一定不在同一平面内B.球面上两点的球面距离,是连结这两点的线段的长C.球面上两点的球面距离,是过这两点的大圆弧长D.用不过球-数学
如图,四棱锥P—ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.(1)证明PA//平面BDE;(2)求二面角B—DE—C的平面角的余弦值;(3)在棱PB上是否存在点
一个简单多面体的直观图和三视图如图所示,它的主视图和侧视图都是腰长为1的等腰直角三角形,俯视图为正方形,E是PD的中点.(1)求证:;(2)求证:;(3)求三棱锥的体积.-高三数学
返回顶部
题目简介
(本小题满分12分)一几何体的三视图如图所示,,A1A=,AB=,AC=2,A1C1=1,在线段上且=.(I)证明:平面⊥平面;(II)求二面角的余弦值.-高二数学
题目详情
(I)证明:平面
(II)求二面角
答案
(I)证明 ∵A1A⊥平面ABC,BC
∴A1A⊥BC.
在Rt△ABC中,AB=
∵BD∶DC=1∶2,∴BD=
∴△DBA∽△ABC,∴∠ADB=∠BAC=90°,
即AD⊥BC.
又A1A∩AD=A,∴BC⊥平面A1AD.
∵BC
(II)解 如图①,作AE⊥C1C交C1C于E点,连接BE,由已知得AB⊥平面ACC1A1,
∴AE是BE在平面ACC1A1内的射影.
由三垂线定理知BE⊥CC1,
∴∠AEB为二面角A—CC1—B的平面角. 图①
过C1作C1F⊥AC交AC于F点,
则CF=AC-AF=1,
C1F=A1A=
在Rt△AEC中,
AE=ACsin60°=2×
在Rt△BAE中,tan∠AEB=
∴cos∠AEB=
即二面角A—CC1—B余弦值为
方法二 (I) 证明 如图②,建立空间直角坐标系,
则A(0,0,0),B(
A1(0,0,
∵BD∶DC=1∶2,∴
∴D点坐标为
∴
∵
∴BC⊥AA1,BC⊥AD.又A1A∩AD=A,
∴BC⊥平面A1AD.又BC
∴平面A1AD⊥平面BCC1B1.
(II)解 ∵BA⊥平面ACC1A1,取m=
设平面BCC1B1的法向量为n=(x,y,z),
则
∴
∴x=
cos〈m,n〉=
=
即二面角A—CC1—B的余弦值为