优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> (本小题满分13分)如图,四面体中,是的中点,,.(Ⅰ)求证:平面;(Ⅱ)求异面直线与所成角的大小;(Ⅲ)求二面角的大小.-高三数学
(本小题满分13分)如图,四面体中,是的中点,,.(Ⅰ)求证:平面;(Ⅱ)求异面直线与所成角的大小;(Ⅲ)求二面角的大小.-高三数学
题目简介
(本小题满分13分)如图,四面体中,是的中点,,.(Ⅰ)求证:平面;(Ⅱ)求异面直线与所成角的大小;(Ⅲ)求二面角的大小.-高三数学
题目详情
(本小题满分13分)如图,四面体
中,
是
的中点,
,
.(Ⅰ)求证:
平面
;(Ⅱ)求异面直线
与
所成角的大小;
(Ⅲ)求二面角
的大小.
题型:解答题
难度:偏易
来源:不详
答案
(Ⅰ) 见解析 (Ⅱ)
(Ⅲ)
(I)证明:
.
连接
.
,又
即
平面
.
(II)方法1 取
的中点
,
的中点
,
为
的中点,
或其补角是
与
所成的角.∴连接
是
斜边
上的中线,
,
.在
中,由余弦定理得
,∴直线
与
所成的角为
.
(Ⅲ)方法l
平面
,过
作
于
,连接
,
是
在平面
上的射影,由三垂线定理得
.
是二面角
的平面角,
,又
.
在
中,
,
.
∴二面角
为
.
(II)方法2建立空间直角坐标系
.则
.
.∴直线
与
所成的角为
.
(Ⅲ)方法2在坐标系中,平面
的法向量
.
设平面
的法向量
,则
,
求得
,
∴二面角
为
.
上一篇 :
一个长方体共一顶点的三个面的
下一篇 :
如图,一个圆锥的底面半径为2cm,
搜索答案
更多内容推荐
对于四面体ABCD,下列命题正确的是(写出所有正确命题的编号)。①相对棱AB与CD所在的直线异面;②由顶点A作四面体的高,其垂足是BCD的三条高线的交点;③若分别作ABC和ABD的边AB-高三数学
在三棱锥中,,.(1)求三棱锥的体积;(2)证明:;(3)求异面直线SB和AC所成角的余弦值。-高三数学
在棱长AB=AD=2,AA1=3的长方体AC1中,点E是平面BCC1B1上动点,点F是CD的中点.(Ⅰ)试确定E的位置,使D1E⊥平面AB1F;(Ⅱ)求二面角B1—AF—B的大小.-高三数学
A、B为球面上相异两点,则通过A、B两点可作球的大圆有()A.一个B.无穷多个C.零个D.一个或无穷多个-数学
如图,在四棱锥P—ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB,PB的中点.(I)求证:EF⊥CD;(II)求DB与平面DEF所成角的正弦值;(III)在平面PA
如图,在三棱锥中,∠=90°,,⊥.(Ⅰ)求证:⊥;(Ⅱ)求三棱锥的体积.-数学
如图所示,四棱锥PABCD底面是直角梯形,底面ABCD,E为PC的中点,PA=AD=AB=1.(1)证明:;(2)证明:;(3)求三棱锥BPDC的体积V.-数学
如图,已知正方形和矩形所在的平面互相垂直,,,是线段的中点.(Ⅰ)求三棱锥的体积;(Ⅱ)求证://平面;(Ⅲ)求异面直线与所成的角.-数学
在四棱锥中,,,底面,,直线与底面成角,点分别是的中点.(1)求二面角的大小;(2)当的值为多少时,为直角三角形.-高三数学
下列命题中,正确的是()A.球面上的四个不同点,一定不在同一平面内B.球面上两点的球面距离,是连结这两点的线段的长C.球面上两点的球面距离,是过这两点的大圆弧长D.用不过球-数学
如图,四棱锥P—ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.(1)证明PA//平面BDE;(2)求二面角B—DE—C的平面角的余弦值;(3)在棱PB上是否存在点
一个简单多面体的直观图和三视图如图所示,它的主视图和侧视图都是腰长为1的等腰直角三角形,俯视图为正方形,E是PD的中点.(1)求证:;(2)求证:;(3)求三棱锥的体积.-高三数学
如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图、俯视图.在直观图中,是的中点.侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.(Ⅰ-高三数学
已知某几何体的三视图如下图所示,其中左视图是边长为2的正三角形,主视图是矩形且,俯视图中分别是所在边的中点,设为的中点.(1)求其体积;(2)求证:;(3)边上是否存在点,-高三数学
如图,已知正三棱柱中,,,点、、分别在棱、、上,且.(Ⅰ)求平面与平面所成锐二面角的大小;(Ⅱ)求点到平面的距离.-高三数学
如右图,在棱长都等于1的三棱锥中,是上的一点,过F作平行于棱AB和棱CD的截面,分别交BC,AD,BD于E,G,H(1)证明截面EFGH是矩形;(2)在的什么位置时,截面面积最大,说明理由.-数学
已知空间四边形的两条对角线的长,,与所成的角为,,,,分别是,,,的中点,求四边形的面积-数学
(本题满分12分)如图,ABCD是边长为2的正方形,ED⊥平面ABCD,ED=1,EF∥BD且EF=BD(1)求证:BF∥平面ACE;(2)求二面角B-AF-C的大小;(3)求点F到平面ACE的距离.
如图,在长方体中,点在棱的延长线上,且.(Ⅰ)求证://平面;(Ⅱ)求证:平面平面;(Ⅲ)求四面体的体积.-高三数学
如图所示,在直角梯形ABCP中,AB=BC=3,AP=7,CD⊥AP,现将沿折线CD折成60°的二面角P—CD—A,设E,F,G分别是PD,PC,BC的中点。(I)求证:PA//平面EFG;(II)若
(本小题满分12分)如图,在四棱锥P—ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形,∠BAD=60°,M为PC上一点,且PA//平面BDM,(1)求证:M为PC
如图,已知三棱柱ABC-A1B1C1的所有棱长都相等,且侧棱垂直于底面,由B沿棱柱侧面经过棱CC1到点A1的最短路线长为,设这条最短路线与CC1的交点为D.(1)求三棱柱ABC-A1B1C1的体积-高
已知向量、满足,则与的夹角为()A.B.C.D.-数学
如图,正三棱柱.(1)求证:平面;(2)求证:;(3)若.-高三数学
如图四棱锥中,底面,正方形的边长为2(1)求点到平面的距离;(2)求直线与平面所成角的大小;(3)求以与为半平面的二面角的正切值。-高三数学
以一个等边三角形底边所在的直线为对称轴旋转一周所得的几何体是()A.一个圆柱B.一个圆锥C.两个圆锥D.一个圆台-数学
如右放置在水平面上的组合体由直三棱柱与正三棱锥组成,其中,.它的正视图、俯视图、从左向右的侧视图的面积分别为,,.(Ⅰ)求直线与平面所成角的正弦;(Ⅱ)在线段上是否存在点-高三数学
如图,平面ACB⊥平面BCD,∠CAB=∠CBD=900,∠BDC=600,BC=6,AB=AC.(Ⅰ)求证:平面ABD⊥平面ACD;(Ⅱ)求二面角A—CD—B的平面角的正切值;(Ⅲ)设过直线AD且与
已知四棱锥(如图)底面是边长为2的正方形.侧棱底面,、分别为、的中点,于。(Ⅰ)求证:平面⊥平面;(Ⅱ)直线与平面所成角的正弦值为,求PA的长;(Ⅲ)在条件(Ⅱ)下,求二面角的余弦-高三数学
设是球心的半径的中点,分别过作垂直于的平面,截球面得两个圆,则这两个圆的面积比值为:()A.B.C.D.-高三数学
在长方体ABCD—中,AB=2,,E为的中点,连结ED,EC,EB和DB,(1)求证:平面EDB⊥平面EBC;(2)求二面角E-DB-C的正切值.-数学
-高三数学
A.2a2B.a2C.D.-高三数学
(本小题满分12分)如图:已知正方体ABCD—A1B1C1D1,过BD1的平面分别交棱AA1和棱CC1于E、F两点。(1)求证:A1E=CF;(2)若E、F分别是棱AA1和棱CC1的中点,求证:平面E
如图,四棱锥的底面是正方形,平面.,,是上的点.(Ⅰ)求证:;(Ⅱ)求二面角的余弦值.-高三数学
如图,四棱锥中,底面为矩形,底面,,,点在侧棱上,。(I)证明:是侧棱的中点;(Ⅱ)求二面角的大小。-高三数学
长方体ABCD—A1B1C1D1(如右图所示),宽、长、高分别为3、4、5,现有一甲壳虫从A出发沿长方体表面爬行到C1来获取食物,试画出它的最短爬行路线,并求其路程的最小值.-数学
如右图P、Q分别是A1B1、BB1的四等分点,M、N分别是D1C1、CC1的中点.沿M→N→Q→P截去一部分,截去的几何体是什么?剩下的几何体也是吗?-数学
如图正方体ABCD-中,E、F、G分别是、AB、BC的中点.(1)证明:⊥EG;(2)证明:⊥平面AEG;(3)求,.-高三数学
图①是一个正方体的表面展开图,MN和PQ是两条面对角线,请在图(2)的正方体中将MN,PQ画出来,并就这个正方体解答下列各题:(1)求MN和PQ所成角的大小;(2)求四面体M—NPQ的体积与-高三数学
以下四个命题:①在圆柱的上、下两底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线;③圆台上、下圆周上各取一点,则两-数学
如图,某建筑物的基本单元可近似地按以下方法构作:先在地平面内作菱形ABCD,边长为1,∠BAD=60°,再在的上方,分别以△与△为底面安装上相同的正棱锥P-ABD与Q-CBD,∠APB=90°.(Ⅰ)
在直三棱柱ABC—A1B1C1中,∠ABC=90°,M、N分别为BB1、A1C1的中点。(Ⅰ)求证:AB⊥CB1;(Ⅱ)求证:MN//平面ABC1。-数学
一个空间几何体的三视图如图所示,其中分别是五点在直立、侧立、水平三个投影面内的投影,且在主视图中,四边形为正方形且;在左视图中俯视图中,(Ⅰ)根据三视图作出空间几何-数学
已知三棱柱ABC—A1B1C1的三视图如图所示,其中主视图AA1B1B和左视图B1BCC1均为矩形,俯高图△A1B1C1中,A1C1=3,A1B1=5,(1)在三棱柱ABC—A1B1C1中,求证:BC
设M={正四棱柱},N={直四棱柱},P={长方体},Q={直平行六面体},则四个集合的关系为()A.M⊊P⊊N⊊QB.M⊊P⊊Q⊊NC.P⊊M⊊N⊊QD.P⊊M⊊Q⊊N-数学
如右图所示,在正三棱柱ABC—A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为,设这条最短路线与CC1的交点为N.求:(1)该三棱
如图,梯形ABCD中,CD//AB,,E是AB的中点,将△ADE沿DE折起,使点A折到点P的位置,且二面角的大小为1200.(I)求证:;(II)求直线PD与平面BCDE所成角的大小;(III)求点D
已知长方体ABCD—A1B1C1D1中,AB=BC=4,AA1=8,E、F分别为AD和CC1的中点,O1为下底面正方形的中心。(Ⅰ)证明:AF⊥平面FD1B1;(Ⅱ)求异面直线EB与O1F所成角的余弦
两个相同的正四棱锥组成如下图1所示的几何体,可放入棱长为1的正方体(图2)内,使正四棱锥的底面ABCD与正方体的某一个面平行,且各顶点均在正方体的面上,则这样的几何体体积-数学
返回顶部
题目简介
(本小题满分13分)如图,四面体中,是的中点,,.(Ⅰ)求证:平面;(Ⅱ)求异面直线与所成角的大小;(Ⅲ)求二面角的大小.-高三数学
题目详情
(Ⅲ)求二面角
答案
连接
即
(II)方法1 取
(Ⅲ)方法l
在
∴二面角
(II)方法2建立空间直角坐标系
(Ⅲ)方法2在坐标系中,平面
设平面
求得
∴二面角