优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 如图,有一块半椭圆形钢板,其半轴长为2r,短半轴长为r,计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S。(1)求面积-高三数学
如图,有一块半椭圆形钢板,其半轴长为2r,短半轴长为r,计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S。(1)求面积-高三数学
题目简介
如图,有一块半椭圆形钢板,其半轴长为2r,短半轴长为r,计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S。(1)求面积-高三数学
题目详情
如图,有一块半椭圆形钢板,其半轴长为2r,短半轴长为r,计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S。
(1)求面积S以x为自变量的函数式,并写出其定义域;
(2)求面积S的最大值。
题型:解答题
难度:中档
来源:北京高考真题
答案
解:(1)依题意,以AB的中点O为原点建立直角坐标系
(如图),
则点C的横坐标为x
点C的纵坐标y满足方程
解得
其定义域为
。
(2)记
则
令
,得
因为当
时,
当
时,
所以
是f(x)的最大值
因此,当
时,S也取得最大值,最大值为
即梯形面积S的最大值为
。
上一篇 :
已知函数f(x)=-x3+2f′(1)x,则函数f
下一篇 :
函数f(x)=x3-3ax-a在(0,1)内有最小
搜索答案
更多内容推荐
函数f(x)=x3-3x2+2在区间[-1,1]上的最大值是[]A、-2B、0C、2D、4-高三数学
y=2-cosxsinx在点(π3,3)处的切线与直线x+ay+1=0垂直,则a为()A.0B.-38C.38D.-83-数学
已知函数f(x)=ax2-3x+4+2lnx(a>0)。(1)当时,求函数f(x)在上的最大值;(2)若f(x)在定义域上是增函数,求实数a的取值范围。-高三数学
已知点M(1,y)在抛物线C:y2=2px(p>0)上,M点到抛物线C的焦点F的距离为2,直线l:y=-x+b与抛物线C交于A,B两点,(1)求抛物线C的方程;(2)若以AB为直径的圆与x轴相切,求该
已知a∈R,函数f(x)=x2(x-a)。(1)当a=3时,求f(x)的零点;(2)求函数y=f(x)在区间[1,2]上的最小值。-高三数学
如图,在半径为30cm的半圆形(O为圆心)铝皮上截取一块矩形材料ABCD,其中点A、B在直径上,点C、D在圆周上,(1)怎样截取才能使截得的矩形ABCD的面积最大?并求最大面积;(2)若将-高三数学
已知函数f(x)=x3-12x+8在区间[-3,3]上的最大值与最小值分别为M,m,则M-m=()。-高三数学
已知函数f(x)=-x3+ax2+1,(a∈R)(1)若在f(x)的图象上横坐标为23的点处存在垂直于y轴的切线,求a的值;(2)若f(x)在区间(-2,3)内有两个不同的极值点,求a取值范围;(3)
已知函数f(x)=x2+2x+alnx(a∈R),(1)当a=-4时,求f(x)的最小值;(2)若函数f(x)在区间(0,1)上为单调函数,求实数a的取值范围;(3)当t≥1时,不等式f(2t-1)≥
曲线y=2x+sinx在点(π,2π)处的切线斜率为______.-数学
已知f(x)=xlnx,g(x)=-x2+ax-3,(1)求函数f(x)在[t,t+2](t>0)上的最小值;(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;(3)证明:
已知函数f(x)=2lnx-x2,(1)若方程f(x)+m=0在[,e]内两个不等的实根时,求实数m的取值范围;(2)如果g(x)=f(x)-ax的图像与x轴交于两点A(x1,0),B(x2,0),且
已知f(x)=ax3-2ax2+b(a≠0)。(1)求出f(x)的极值;(2)若f(x)在区间[-2,1]上最大值是5,最小值是-11,求f(x)的解析式。-高三数学
某地有三个村庄,分别位于等腰直角三角形ABC的三个顶点处,已知AB=AC=6km,现计划在BC边的高AO上一点P处建造一个变电站。记P到三个村庄的距离之和为y,(Ⅰ)若∠PBO=α,把y表示-高三数学
对于R上可导的任意函数f(x),若满足(x-1)f′(x)≥0,则必有[]A.f(0)+f(2)<2f(1)B.f(0)+f(2)≤2f(1)C.f(0)+f(2)≥f(1)D.f(0)+f(2
设函数f(x)=(x+1)ln(x+1),若对所有的x≥0,都有f(x)≥ax成立,求实数a的取值范围。-高三数学
已知函数f(x)=elnx,g(x)=e-1•f(x)-(x+1).(e=2.718…)(1)求函数g(x)的极大值;(2)求证:1+12+13+…+1n>ln(n+1)(n∈N*);(3)对于函数f
已知f(x)=2x3-5x,g(x)=x3+ax2+bx+c,x∈(0,+∞),设(1,f(1))是曲线y=f(x)与y=g(x)的一个公共点,且在此点处的切线相同.记g(x)的导函数为g'
已知函数f(x)=-x2+8x,g(x)=6lnx+m。(1)求f(x)在区间[t,t+1]上的最大值h(t);(2)是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点?
昌九高速公路起于江西省南昌市蛟桥收费站,终于九江市荷花垄收费站,全长122km,假设某汽车从九江荷花垄进入高速公路后以不低于60km/h,且不高于120km/h的速度匀速行驶到南昌-高三数学
(1)已知函数f(x)=lnx-x+1,x∈(0,+∞),求函数f(x)的最大值;(2)设ak,bk(k=1,2,…,n)均为正数,证明:①若a1b1+a2b2+…+anbn≤b1+b2+…+bn,则
已知f(x)=2x3-6x2+m(m为常数),在[-2,2]上有最大值为3,那么此函数在[-2,2]上的最小值是[]A.-37B.-29C.-5D.2-高三数学
某商店经销一种世博纪念品,每件产品的成本为30元,并且每卖出一件产品需向税务部门上缴5元的税收,设每件产品的日售价为x元(35≤x≤41),根据市场调查,日销售量与ex(e为自然-高三数学
已知定义在R上的奇函数f(x)=x3+bx2+cx+d在x=±1处取得极值.(Ⅰ)求函数f(x)的解析式;(Ⅱ)试证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|
设函数f(x)是定义在R上周期为2的可导函数,若f(2)=2,且limx→0f(x+2)-22x=-2,则曲线y=f(x)在点(0,f(0)处切线方程是()A.y=-2x+2B.y=-4x+2C.y=
二次函数y=x2-2x+2与y=-x2+ax+b(a>0,b>0)在它们的一个交点处切线互相垂直,则a+b的值为()A.12B.32C.52D.2-数学
统计表明,某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:y=(0<x≤120)。已知甲、乙两地相距100千米。(1)当汽车以40千米/小时-高三数学
已知函数f(x)=x2-mlnx+(m-1)x,m∈R;(1)当m=2时,求函数f(x)的最小值;(2)讨论f(x)的单调性。-高三数学
已知函数f(x)=ex-ex,(Ⅰ)求函数f(x)的最小值;(Ⅱ)对于函数h(x)=x2与g(x)=elnx,是否存在公共切线y=kx+b(常数k,b)使得h(x)≥kx+b和g(x)≤kx+b在函数
某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式,其中3<x<6,a为常数,已知销售价格为5元/千克时,每日可售出该商品11-高三数学
请您设计一个帐篷,它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如图所示)。试问当帐篷的顶点O到底面中心O1的距离为多少时,帐篷的体积最大?-高三数学
已知函数f(x)=(2x+a)•ex(e为自然对数的底数).(1)求函数f(x)的极小值;(2)对区间[-1,1]内的一切实数x,都有-2≤f(x)≤e2成立,求实数a的取值范围.-数学
设曲线f(x)=x3-x上的点P0处的切线为2x-y=2,则点P0的坐标是()A.(1,0)B.(-1,0)C.(-1,-4)D.(1,0)或(-1,0)-数学
曲线y=x3+3x2+2在点(1,6)处的切线方程为()A.9x+y-3=0B.9x-y-3=0C.9x+y-15=0D.9x-y-15=0-数学
设函数f(x)=x3+ax2+bx+c在x=1处取得极值-2,试用c表示a和b,并求f(x)的单调区间.-数学
某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为-高三数学
已知曲线C1:y=x2e+e(e为自然对数的底数),曲线C2:y=2elnx和直线m:y=2x.(I)求证:直线m与曲线C1、C2都相切,且切于同一点;(II)设直线x=t(t>0)与曲线C1、C2及
已知函数f(x)=x3-ax|x+a|,x∈[0,2],(1)当a=-1时,求函数f(x)的最大值;(2)当函数f(x)的最大值为0时,求实数a的取值范围.-高三数学
已知limn→∞(2n2n+1-an-b)=2,其中a,b∈R,则a-b=______.-数学
在x∈上,函数f(x)=x2+px+q与在同一点取得相同的最小值,那么f(x)在上的最大值是[]A.B.4C.8D.-高二数学
已知limx→∞(2x-1+ax-13x)=2,则a=()A.1B.2C.3D.6-数学
设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为[]A.1B.C.D.-高三数学
已知函数f(x)=exx-a,其中常数(a<0).(I)若a=-1,求函数f(x)的定义域及极值;(Ⅱ)若存在实数x∈(a,0],使得不等式f(x)≤12成立,求a的取值范围.-数学
已知函数f(x)=23x(x2-3ax-92)(a∈R),若函数f(x)的图象上点P(1,m)处的切线方程为3x-y+b=0,则m的值为()A.13B.12C.-13D.-12-数学
已知函数f(x)=(t-x),其中t为常数,且t>0。(1)求函数ft(x)在(0,+∞)上的最大值;(2)数列{an}中,a1=3,a2=5,其前n项和Sn满足Sn+Sn-2=2Sn-1+2n
已知三次函数f(x)=ax3+bx2+cx。(1)若函数f(x)过点(-1,2)且在点(1,f(1))处的切线方程为y+2=0,求函数f(x)的解析式;(2)在(1)的条件下,若对于区间[-3,2]上
已知函数f(x)=-x3+ax2-4(a∈R),f(x)是f′(x)的导函数。(1)当a=2时,对于任意的m∈[-1,1],求f(m)的范围;(2)若存在x0∈(0,+∞),使f(x0)>0,求a的取
曲线y=x3上一点B处的切线l交x轴于点A,△OAB(O是原点)是以A为顶点的等腰三角形,则切线l的倾斜角为()A.30°B.45°C.60°D.120°-数学
已知定义在正实数集上的函数f(x)=12x2+2ex,g(x)=3e2lnx+b(其中e为常数,e=2.71828…),若这两个函数的图象有公共点,且在该点处的切线相同.(Ⅰ)求实数b的值;(Ⅱ)当x
已知函数f(x)=alnxx+1+bx,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.(Ⅰ)求a、b的值;(Ⅱ)如果当x>0,且x≠1时,f(x)>lnxx-1+kx,求k的取值
返回顶部
题目简介
如图,有一块半椭圆形钢板,其半轴长为2r,短半轴长为r,计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S。(1)求面积-高三数学
题目详情
(2)求面积S的最大值。
答案
则点C的横坐标为x
点C的纵坐标y满足方程
解得
其定义域为
则
令
因为当
当
所以
因此,当
即梯形面积S的最大值为