已知数列{an}中,a1=12,点(n,2an+1-an)(n∈N*)在直线y=x上,(Ⅰ)计算a2,a3,a4的值;(Ⅱ)令bn=an+1-an-1,求证:数列{bn}是等比数列;(Ⅲ)设Sn、Tn

题目简介

已知数列{an}中,a1=12,点(n,2an+1-an)(n∈N*)在直线y=x上,(Ⅰ)计算a2,a3,a4的值;(Ⅱ)令bn=an+1-an-1,求证:数列{bn}是等比数列;(Ⅲ)设Sn、Tn

题目详情

已知数列{an}中,a1=
1
2
,点(n,2an+1-an)(n∈N*)在直线y=x上

(Ⅰ)计算a2,a3,a4的值;
(Ⅱ)令bn=an+1-an-1,求证:数列{bn}是等比数列;
(Ⅲ)设Sn、Tn分别为数列{an}、{bn}的前n项和,是否存在实数λ,使得数列{
SnTn
n
}
为等差数列?若存在,试求出λ的值;若不存在,请说明理由.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)由题意,∵点(n,2an+1-an)在直线y=x上,
∴2an+1-an=n
a1=class="stub"1
2
,∴a2=class="stub"3
4

同理,a3=class="stub"11
8
a4=class="stub"35
16

(Ⅱ)证明:∵bn=an+1-an-1,2an+1-an=n
∴bn+1=an+2-an+1-1=
an+1+n+1
2
-an+1-1=class="stub"1
2
(an+1-an-1)=class="stub"1
2
bn,
∵b1=a2-a1-1=-class="stub"3
4

∴数列{bn}是以-class="stub"3
4
为首项,class="stub"1
2
为公比的等比数列;
(Ⅲ)存在λ=2,使数列{
SnTn
n
}
是等差数列.
由(Ⅱ)知,bn=-3×(class="stub"1
2
)n+1
Tn=3×(class="stub"1
2
)
n+1
-class="stub"3
2

∵an+1=n-1-bn=n-1+(class="stub"1
2
)
n+1
,∴an=n-2+(class="stub"1
2
)
n

∴Sn=
n(n+1)
2
-2n+3×
class="stub"1
2
(1-class="stub"1
2n
)
1-class="stub"1
2
=
n2-3n
2
+3-class="stub"3
2n

由题意,要使数列{
SnTn
n
}
是等差数列,则
S2T2
2
=
S1T1
1
+
S3T3
3

∴2×class="stub"10-9λ
16
=class="stub"1
2
-class="stub"3
4
λ+class="stub"42-21λ
48
,∴λ=2
当λ=2时,
SnTn
n
=class="stub"n-3
2
,数列是等差数列
∴当且仅当λ=2时,数列是等差数列.

更多内容推荐