已知正项等差数列{an}的前n项和为Sn,且满足a1+a5=13a32,S7=56.(Ⅰ)求数列{an}的通项公式an;(Ⅱ)若数列{bn}满足b1=a1且bn+1-bn=an+1,求数列{1bn}的

题目简介

已知正项等差数列{an}的前n项和为Sn,且满足a1+a5=13a32,S7=56.(Ⅰ)求数列{an}的通项公式an;(Ⅱ)若数列{bn}满足b1=a1且bn+1-bn=an+1,求数列{1bn}的

题目详情

已知正项等差数列{an}的前n项和为Sn,且满足a1+a5=
1
3
a32
,S7=56.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)若数列{bn}满足b1=a1且bn+1-bn=an+1,求数列{
1
bn
}
的前n项和Tn
题型:解答题难度:中档来源:邯郸一模

答案

(Ⅰ)∵{an}是等差数列且a1+a5=class="stub"1
3
a32

2a3=class="stub"1
3
a32

又∵an>0∴a3=6.…(2分)
S7=
7(a1+a7)
2
=7a4=56∴a4=8
,…(4分)
∴d=a4-a3=2,
∴an=a3+(n-3)d=2n.   …(6分)
(Ⅱ)∵bn+1-bn=an+1且an=2n,
∴bn+1-bn=2(n+1)
当n≥2时,bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=2n+2(n-1)+…+2×2+2=n(n+1),…(8分)
当n=1时,b1=2满足上式,bn=n(n+1)
class="stub"1
bn
=class="stub"1
n(n+1)
=class="stub"1
n
-class="stub"1
n+1
…(10分)
Tn=class="stub"1
b1
+class="stub"1
b2
+…+class="stub"1
bn-1
+class="stub"1
bn
=(1-class="stub"1
2
)+(class="stub"1
2
-class="stub"1
3
)+…+(class="stub"1
n-1
-class="stub"1
n
)+(class="stub"1
n
-class="stub"1
n+1
)
=1-class="stub"1
n+1
=class="stub"n
n+1
.        …(12分)

更多内容推荐