已知函数f(x)=ax(x<0)(a-3)x+4a(x≥0),满足对任意x1≠x2,都有f(x1)-f(x2)x1-x2<0成立,则a的取值范围是______.-数学

题目简介

已知函数f(x)=ax(x<0)(a-3)x+4a(x≥0),满足对任意x1≠x2,都有f(x1)-f(x2)x1-x2<0成立,则a的取值范围是______.-数学

题目详情

已知函数f(x)=
ax(x<0)
(a-3)x+4a(x≥0)
,满足对任意x1≠x2,都有
f(x1)-f(x2)
x1-x2
<0
成立,则a的取值范围是______.
题型:填空题难度:偏易来源:不详

答案

对于不等式
f(x1)-f(x2)
x1-x2
<0

当x1<x2时,就有:x1-x2<0
所以:f(x1)-f(x2)>0
即说明函数f(x)在定义域R内为减函数 ①
当x<0时,f(x)=ax
所以,f'(x)=axlna<0
则0<a<1…(1)②
当x≥0时,f(x)=(a-3)x+4a
所以,f'(x)=a-3<0
则a<3…(2)
而,要保证在整个R上f(x)均为减函数
所以:在x趋近于0的时候,ax≥(a-3)x+4a
lim
x→0
f(x)=
lim
x→0
ax=1
f(x)=
lim
x→0
(a-3)x+4a=4a
所以,1≥4a
则,a≤class="stub"1
4
…(3)
联立(1)(2)(3)得到:
0<a≤class="stub"1
4

故答案为:(0,class="stub"1
4
]

更多内容推荐