设{an}和{bn}都是公差不为零的等差数列,且limn→∞anbn=2,则limn→∞b1+b2+…+bnna2n的值为______.-数学

题目简介

设{an}和{bn}都是公差不为零的等差数列,且limn→∞anbn=2,则limn→∞b1+b2+…+bnna2n的值为______.-数学

题目详情

设{an}和{bn}都是公差不为零的等差数列,且
lim
n→∞
an
bn
=2
,则
lim
n→∞
b1+b2+…+bn
na2n
的值为______.
题型:填空题难度:中档来源:不详

答案

设{an}和{bn}的公差分别为d1 和d2,
lim
n→∞
an
bn
=
lim
n→∞
a1+(n-1)d1
b1+(n-1)d2
=
d1
d2
=2,∴d1=2d2.
lim
n→∞
b1+b2+…+bn
na2n
=
lim
n→∞
nb1+
n(n-1)
2
d2
n[a1+(2n-1)d1 ]
=
d2
2
d1
=
d2
4d1
=class="stub"1
8

故答案为:class="stub"1
8

更多内容推荐