已知定义域为[0,1]的函数f(x)同时满足:(1)对于任意x∈(0,1),总有f(x)>0;(2)f(1)=1;(3)若x1≥0,x2≥0,x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2

题目简介

已知定义域为[0,1]的函数f(x)同时满足:(1)对于任意x∈(0,1),总有f(x)>0;(2)f(1)=1;(3)若x1≥0,x2≥0,x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2

题目详情

已知定义域为[0,1]的函数f(x)同时满足:
(1)对于任意x∈(0,1),总有f(x)>0;
(2)f(1)=1;
(3)若x1≥0,x2≥0,x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2);
(Ⅰ)证明f(x)在[0,1]上为增函数;
(Ⅱ)若对于任意x∈[0,1],总有4f2(x)-4(2-a)f(x)+5-4a≥0,求实数a的取值范围;
(Ⅲ)比较f(
1
22
+
2
23
+…+
n
2n+1
)
与1的大小,并给与证明.
题型:解答题难度:中档来源:不详

答案

证明:(Ⅰ)设0≤x1<x2≤1,则x2-x1∈(0,1)
∴f(x2-x1)>0
∴f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-f(x1)=f(x2-x1)>0
即f(x2)>f(x1)
故f(x)在[0,1]上是单调递增的
(Ⅱ)因f(x)在x∈[0,1]上是增函数,则f(x)≤f(1)=1⇒1-f(x)≥0,
当f(x)≤f(1)=1时,容易验证不等式成立;
当f(x)<1时,则
4f2(x)-4(2-a)f(x)+5-4a≥0⇒a≤
4f2(x)-8f(x)+5
4-4f(x)
对x∈[0,1]恒成立,
y=
4f2(x)-8f(x)+5
4-4f(x)
=1-f(x)+class="stub"1
4[1-f(x)]
≥1
,从而则a≤1
综上,所求为a∈(-∞,1];
(Ⅲ)令Sn=class="stub"1
22
+class="stub"2
23
+class="stub"3
24
+…+class="stub"n
2n+1
----------①,
class="stub"1
2
Sn
=class="stub"1
23
+class="stub"2
24
+class="stub"3
25
+…+class="stub"n
2n+2
--------------②,
由①-②得,class="stub"1
2
Sn
=class="stub"1
22
+class="stub"1
23
+class="stub"1
24
+…+class="stub"1
2n+1
-class="stub"n
2n+2
,即,Sn=class="stub"1
2 
+class="stub"1
22
+class="stub"1
23
+…+class="stub"1
2n
-class="stub"n
2n+1
=1-class="stub"1
2n
-class="stub"n
2n+1
<1

所以f(class="stub"1
22
+class="stub"2
23
+…+class="stub"n
2n+1
)<f(1)=1

更多内容推荐