已知定义域为R的函数f(x)对任意实数x,y满足f(x+y)+f(x-y)=2f(x)cosy,且f(0)=0,f(π2)=1.(1)求f(π4)及f(3π2)的值;(2)求证:f(x)为奇函数且是周

题目简介

已知定义域为R的函数f(x)对任意实数x,y满足f(x+y)+f(x-y)=2f(x)cosy,且f(0)=0,f(π2)=1.(1)求f(π4)及f(3π2)的值;(2)求证:f(x)为奇函数且是周

题目详情

已知定义域为R的函数f(x)对任意实数x,y满足f(x+y)+f(x-y)=2f(x)cosy,且f(0)=0,f(
π
2
)=1

(1)求f(
π
4
)
f(
2
)
的值;
(2)求证:f(x)为奇函数且是周期函数.
题型:解答题难度:中档来源:不详

答案

(1)在f(x+y)+f(x-y)=2f(x)cosy中,
x=class="stub"π
4
y=class="stub"π
4
,得f(class="stub"π
4
+class="stub"π
4
)+
f(class="stub"π
4
-class="stub"π
4
)=2f(class="stub"π
4
)cosclass="stub"π
4

f(class="stub"π
2
)+
f(0)=
2
f(class="stub"π
4
)
,…(3分)
又已知f(0)=0,f(class="stub"π
2
)=1

所以f(class="stub"π
4
)=
2
2
.…(4分)
在f(x+y)+f(x-y)=2f(x)cosy中,
取x=π,y=class="stub"π
2
,得f(π+class="stub"π
2
)+
f(π-class="stub"π
2
)=2f(π)cosclass="stub"π
2

f(class="stub"3π
2
)+
f(class="stub"π
2
)=0
,…(7分)
又已知f(class="stub"π
2
)=1

所以f(class="stub"3π
2
)=-1
.…(8分)
证明:(2)在f(x+y)+f(x-y)=2f(x)cosy中,
取x=0,
得f(0+y)+f(0-y)=2f(0)cosy,
又已知f(0)=0,
所以f(y)+f(-y)=0,
即f(-y)=-f(y),
f(x)为奇函数.…(11分)
在f(x+y)+f(x-y)=2f(x)cosy中,
y=class="stub"π
2
,得f(x+class="stub"π
2
)+f(x-class="stub"π
2
)=0

于是有f(x+class="stub"3π
2
)+f(x+class="stub"π
2
)=0

所以f(x+class="stub"3π
2
)=f(x-class="stub"π
2
)

即f(x+2π)=f(x),
f(x)是周期函数.…(14分)

更多内容推荐