已知函数f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若m,n∈[-1,1],m+n≠0时,有f(m)+f(n)m+n>0,若f(x)≤t2-2at+1对所有x∈[-1,1],t∈[0,1]

题目简介

已知函数f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若m,n∈[-1,1],m+n≠0时,有f(m)+f(n)m+n>0,若f(x)≤t2-2at+1对所有x∈[-1,1],t∈[0,1]

题目详情

已知函数f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若m,n∈[-1,1],m+n≠0时,有
f(m)+f(n)
m+n
>0
,若f(x)≤t2-2at+1对所有x∈[-1,1],t∈[0,1]恒成立,则实数a的取值范围是______.
题型:填空题难度:中档来源:不详

答案

任取-1≤x1<x2≤1,则
f(x1)-f(x2)=f(x1)+f(-x2)=
f(x1)+f(-x2)
x1-x2
•(x1-x2)
∵-1≤x1<x2≤1,∴x1+(-x2)≠0,
由已知
f(x1)+f(-x2)
x1-x2
>0,又x1-x2<0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
所以f(x)在[-1,1]上为增函数.
∵f(1)=1,∴对x∈[-1,1],恒有f(x)≤1.
所以要使f(x)≤t2-2at+1对所有x∈[-1,1],t∈[0,1]恒成立,
即要t2-2at+1≥1成立,故t2-2at≥0成立.
∵t∈[0,1],
∴t≠0时2a≤t,即a≤class="stub"t
2
,解得a∈(-∞,0].
t=0时,a∈R,
综上,a∈(-∞,0].
故答案为:(-∞,0].

更多内容推荐