已知函数f(x)=(1+cotx)sin2x+msin(x+π4)sin(x-π4).(1)当m=0时,求f(x)在区间[π8,3π4]上的取值范围;(2)当tana=2时,f(a)=35,求m的值.

题目简介

已知函数f(x)=(1+cotx)sin2x+msin(x+π4)sin(x-π4).(1)当m=0时,求f(x)在区间[π8,3π4]上的取值范围;(2)当tana=2时,f(a)=35,求m的值.

题目详情

已知函数f(x)=(1+cotx)sin2x+msin(x+
π
4
)sin(x-
π
4
).
(1)当m=0时,求f(x)在区间[
π
8
4
]
上的取值范围;
(2)当tana=2时,f(a)=
3
5
,求m的值.
题型:解答题难度:中档来源:江西

答案

(1)当m=0时,f(x)=(1+class="stub"cosx
sinx
)sin2x=sin2x+sinxcosx=class="stub"1-cos2x+sin2x
2
=class="stub"1
2
[
2
sin(2x-class="stub"π
4
)+1]

由已知x∈[class="stub"π
8
,class="stub"3π
4
]
,得2x-class="stub"π
4
∈[-
2
2
,1]
,从而得:f(x)的值域为[0,
1+
2
2
]


(2)因为f(x)=(1+class="stub"cosx
sinx
)sin2x+msin(x+class="stub"π
4
)sin(x-class="stub"π
4
)

=sin2x+sinxcosx+
m(cosclass="stub"π
2
-cos2x)
2

=class="stub"1-cos2x
2
+class="stub"sin2x
2
-class="stub"mcos2x
2

=class="stub"1
2
[sin2x-(1+m)cos2x]+class="stub"1
2

所以f(α)=class="stub"1
2
[sin2α-(1+m)cos2α]+class="stub"1
2
=class="stub"3
5

当tanα=2,得:sin2a=class="stub"2sinacosa
sin2a+cos2a
=class="stub"2tana
1+tan2a
=class="stub"4
5
cos2a=-class="stub"3
5

代入①式,解得m=-2.

更多内容推荐