已知椭圆x2a2+y2b2=1(a>b>0)与双曲线x2m2-y2n2=1(m>0,n>0)有相同的焦点(-c,0)和(c,0),若c是a、m的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是

题目简介

已知椭圆x2a2+y2b2=1(a>b>0)与双曲线x2m2-y2n2=1(m>0,n>0)有相同的焦点(-c,0)和(c,0),若c是a、m的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是

题目详情

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
与双曲线
x2
m2
-
y2
n2
=1
(m>0,n>0)有相同的焦点(-c,0)和(c,0),若c是a、m的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是______.
题型:填空题难度:中档来源:不详

答案

由题意得c2=a2-b2=m2+n2=1 ①,
c2=am=2 ②,
2n2=2m2+c2=3 ③,
将=1 ①代入=3 ③得2n2=3m2+n2,
n=
3
m
,代入=3 ③得c=2m,
再代入=2 ②得a=4m,
e=class="stub"c
a
=class="stub"1
2

故答案为class="stub"1
2

更多内容推荐