设{an}是由正数组成的等差数列,Sn是其前n项和(1)若Sn=20,S2n=40,求S3n的值;(2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式SpSq<Sm2成立;(3)是否存在常

题目简介

设{an}是由正数组成的等差数列,Sn是其前n项和(1)若Sn=20,S2n=40,求S3n的值;(2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式SpSq<Sm2成立;(3)是否存在常

题目详情

设{an}是由正数组成的等差数列,Sn是其前n项和
(1)若Sn=20,S2n=40,求S3n的值;
(2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式SpSq<Sm2成立;
(3)是否存在常数k和等差数列{an},使kan2-1=S2n-Sn+1恒成立(n∈N*),若存在,试求出常数k和数列{an}的通项公式;若不存在,请说明理由.
题型:解答题难度:中档来源:钟祥市模拟

答案

(1)在等差数列{an}中,Sn,S2n-Sn,S3n-S2n,…成等差数列,
∴Sn+(S3n-S2n)=2(S2n-Sn)
∴S3n=3 S2n-3 Sn=60…(4分)
(2)SpSq=class="stub"1
4
pq(a1+ap)(a1+aq)
=class="stub"1
4
pq[a12+a1(ap+aq)+apaq]
=class="stub"1
4
pq(a12+2a1am+apaq)<class="stub"1
4
class="stub"p+q
2
)2[a12+2a1am+(
ap+aq
2
)2]
=class="stub"1
4
m2(a12+2a1am+am2)=[class="stub"1
2
m(a1+am)]2
=Sm2…(8分)
(3)假设存在常数k和等差数列{an},使kan2-1=S2n-Sn+1恒成立.
设an=pn+q(p,q为常数),则Kan2-1=kp2n2+2kpqn+kq2-1,
Sn=class="stub"1
2
pn(n+1)+qnS2n-Sn+1=class="stub"3
2
pn2+(q-class="stub"p
2
)n-(p+q)

kp2n2+2kpqn+kp2-1=class="stub"3
2
pn2+(q-class="stub"p
2
n)-(p+q)

故有
kp2=class="stub"3
2
p…①
2kpq=q-class="stub"p
2
…②
kq2-1=-(p+q)…③


由①得p=0或 kp=class="stub"3
2
.当p=0时,由②得q=0,而p=q=0不适合③,故p≠0把 kp=class="stub"3
2
代入②,得 q=-class="stub"p
4
q=-class="stub"p
4
代入③,又 kp=class="stub"3
2
p=class="stub"32
27
,从而 q=-class="stub"8
27
,k=class="stub"81
64
.故存在常数 k=class="stub"81
64
及等差数列 an=class="stub"32
27
n-class="stub"8
27
满足题意.

更多内容推荐