在数列an中,a1=2,an+1=2an+2n+1(n∈N).(1)求证:数列{an2n}为等差数列;(2)若m为正整数,当2≤n≤m时,求证:(m-n+1)(n•3nan)1m≤m2-1m-数学

题目简介

在数列an中,a1=2,an+1=2an+2n+1(n∈N).(1)求证:数列{an2n}为等差数列;(2)若m为正整数,当2≤n≤m时,求证:(m-n+1)(n•3nan)1m≤m2-1m-数学

题目详情

在数列an中,a1=2,an+1=2an+2n+1(n∈N).
(1)求证:数列{
an
2n
}
为等差数列;
(2)若m为正整数,当2≤n≤m时,求证:(m-n+1)(
n•3n
an
)
1
m
m2-1
m
题型:解答题难度:中档来源:不详

答案

(I)由an+1=2an+2n+1变形得:
an+1
2n+1
=
an
2n
+1,即
an+1
2n+1
-
an
2n
=1

故数列{
an
2n
}
是以
a1
2
=1
为首项,1为公差的等差数列
(II)由(I)得an=n•2n(m-n+1)(
n•3n
an
)class="stub"1
m
m2-1
m
即(m-n+1)(class="stub"3
2
)class="stub"n
m
m2-1
m

f(n)=(m-n+1)•(class="stub"3
2
)class="stub"n
m
,则f(n+1)=(m-n)•(class="stub"3
2
)class="stub"n+1
m

m>n≥2时,
f(n)
f(n+1)
=class="stub"m-n+1
m-n
•(class="stub"2
3
)class="stub"1
m
=(1+class="stub"1
m-n
)•(class="stub"2
3
)class="stub"1
m
≥(1+class="stub"1
m-2
)•(class="stub"2
3
)class="stub"1
m

(1+class="stub"1
m-2
)m=1+
C1m
•class="stub"1
m-2
+>1+class="stub"m
m-2
>2>class="stub"3
2
1+class="stub"1
m-2
>(class="stub"3
2
)class="stub"1
m

f(n)
f(n+1)
>1,则f(n)
为递减数列.
当m=n时,f(n)>f(n+1)
∴当m≥n≥2时,f(n)递减数列.
f(x)max=f(2)=(class="stub"9
4
)class="stub"1
m
(m-1),故只需证(class="stub"9
4
)class="stub"1
m
(m-1)≤
m2-1
m

要证:(m-n+1)(class="stub"3
2
)class="stub"n
m
m2-1
m
即证class="stub"9
4
≤(class="stub"m+1
m
)m=(1+class="stub"1
m
)m,而m≥2
时,(1+class="stub"1
m
)m
C0m
+
C1m
•class="stub"1
m
+
C0m
•class="stub"1
m2
=2+class="stub"1
m2
m(m-1)
2

=2+class="stub"m-1
2m
=2+class="stub"1
2
-class="stub"1
2m
≥2+class="stub"1
2
-class="stub"1
2×2
=class="stub"9
4

故原不等式成立.

更多内容推荐