已知数列{an}满足:a1=a2=a3=2,an+1=a1a2…an-1(n≥3),记bn-2=a12+a22+…+an2-a1a2…an(n≥3).(1)求证数列{bn}为等差数列,并求其通项公式;

题目简介

已知数列{an}满足:a1=a2=a3=2,an+1=a1a2…an-1(n≥3),记bn-2=a12+a22+…+an2-a1a2…an(n≥3).(1)求证数列{bn}为等差数列,并求其通项公式;

题目详情

已知数列{an}满足:a1=a2=a3=2,an+1=a1a2…an-1(n≥3),记bn-2=a12+a22+…+an2-a1a2…an(n≥3).
(1)求证数列{bn}为等差数列,并求其通项公式;
(2)设cn=1+
1
b2n
+
1
b2n+1
,数列{
cn
}的前n项和为Sn,求证:n<Sn<n+1.
题型:解答题难度:中档来源:不详

答案

(1)方法一  当n≥3时,因bn-2=a12+a22+…+an2-a1a2…an①,
故bn-1=a12+a22+…+an2+an+12-a1a2…anan+1②. …(2分)
②-①,得  bn-1-bn-2=an+12-a1a2…an(an+1-1)=an+12-(an+1+1)(an+1-1)=1,为常数,
所以,数列{bn}为等差数列. …(5分)
因  b1=a12+a22+a32-a1a2a3=4,故  bn=n+3.   …(8分)
方法二  当n≥3时,a1a2…an=1+an+1,a1a2…anan+1=1+an+2,
将上两式相除并变形,得  an+12=an+2-an+1+1.…(2分)
于是,当n∈N*时,bn=a12+a22+…+an+22-a1a2…an+2
=a12+a22+a32+(a5-a4+1)+…+(an+3-an+2+1)-a1a2…an+2
=a12+a22+a32+(an+3-a4+n-1)-(1+an+3)
=10+n-a4.
又a4=a1a2a3-1=7,故bn=n+3(n∈N*).
所以数列{bn}为等差数列,且bn=n+3. …(8分)
(2)因  cn=1+class="stub"1
(n+3)2
+class="stub"1
(n+4)2
=
((n+3)(n+4)+1)2
(n+3)2(n+4)2
,…(12分)
故  
cn
=
(n+3)(n+4)+1
(n+3)(n+4)
=1+class="stub"1
(n+3)(n+4)
=1+class="stub"1
n+3
-class="stub"1
n+4

所以  Sn=(1+class="stub"1
4
-class="stub"1
5
)+(1+class="stub"1
5
-class="stub"1
6
)+…+(1+class="stub"1
n+3
-class="stub"1
n+4
)
=n+class="stub"1
4
-class="stub"1
n+4
,…(15分)
即  n<Sn<n+1. …(16分)

更多内容推荐