定义运算a*b=a(a≤b)b(a>b),例如,1*2=1,则函数f(x)=x2*(1-|x|)的最大值为______.-数学

题目简介

定义运算a*b=a(a≤b)b(a>b),例如,1*2=1,则函数f(x)=x2*(1-|x|)的最大值为______.-数学

题目详情

定义运算a*b=
a (a≤b)
b (a>b)
,例如,1*2=1,则函数f(x)=x2*(1-|x|)的最大值为______.
题型:填空题难度:偏易来源:绍兴一模

答案

由题意知
∵a*b=
a (a≤b)
b (a>b)

∴函数f(x)=x2*(1-|x|)可化简为:f(x)=
x2(x2≤1-|x|)
1-|x|(x2>1-|x|)

令t=|x|得:f(t)=
t2(t2≤1-t)
1-t(t2>1-t)

∴要求原分段函数的最大值,只需求f(t)=
t2(t2≤1-t)
1-t(t2>1-t)
的最大值
即:f(t)=
t2(0≤ t≤
-1+
5
2
)
1-t(t>
-1+
5
2
)

又∵函数f(t)在区间[0,
-1+
5
2
]上单调递增函数,在区间(
-1+
5
2
,+∞)上单调递减函数,
∴f(t)的最大值在t=
-1+
5
2
时取得,即f(t)max=f(
-1+
5
2
)=
3-
5
2

故答案为:
3-
5
2

更多内容推荐