在平面直角坐标系xOy中,抛物线y=x2上异于坐标原点O的两不同动点A、B满足AO⊥BO(如下图所示),(Ⅰ)求△AOB的重心G(即三角形三条中线的交点)的轨迹方程;(Ⅱ)△AOB的面积是否存在最-高
题目简介
在平面直角坐标系xOy中,抛物线y=x2上异于坐标原点O的两不同动点A、B满足AO⊥BO(如下图所示),(Ⅰ)求△AOB的重心G(即三角形三条中线的交点)的轨迹方程;(Ⅱ)△AOB的面积是否存在最-高
题目详情
(Ⅰ)求△AOB的重心G(即三角形三条中线的交点)的轨迹方程;
(Ⅱ)△AOB的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由。
答案
则
∵OA⊥OB,
∴
又点A,B在抛物线上,有
代入(2)化简得
∴
所以重心为G的轨迹方程为
(Ⅱ)
由(Ⅰ)得
当且仅当
所以△AOB的面积存在最小值,存在时求最小值1。