(本小题满分12分)设实数x,y满足不等式组:(1)求作点(x,y)所在的平面区域;(2)设,在(1)所求的区域内,求函数的最大值和最小值。-高二数学

题目简介

(本小题满分12分)设实数x,y满足不等式组:(1)求作点(x,y)所在的平面区域;(2)设,在(1)所求的区域内,求函数的最大值和最小值。-高二数学

题目详情

(本小题满分12分)
设实数x,y满足不等式组:
(1)求作点(x,y)所在的平面区域;
(2)设,在(1)所求的区域内,求函数的最大值和最小值。
题型:解答题难度:中档来源:不详

答案

时,  y最小为-1-2A.;最大为7+3A.。
当A.>2时,  y的最大为7+3A.;y的最小为1-3A.。
本题考查不等式中的线性规划知识,画出平面区域与正确理解目标函数z=y-ax的几何意义是解答好本题的关键。
(1)将点的坐标设出,据已知求出点的横坐标、纵坐标满足的约束条件,画出可行域,
(2)①观察(1)的可行域②z为目标函数纵截距③画直线y-ax=0,平移直线观察最值.

更多内容推荐