若x>y>0,则2x3+3xy-y2的最小值为______.-数学

题目简介

若x>y>0,则2x3+3xy-y2的最小值为______.-数学

题目详情

若x>y>0,则
2
x3+
3
xy-y2
的最小值为______.
题型:填空题难度:中档来源:不详

答案

因为x>y>0,
所以
2
x3+class="stub"3
xy-y2
=
2
x3
+class="stub"3
y(x-y)
2
x3
+class="stub"3
(class="stub"y+x-y
2
)2
=
2
x3
+class="stub"12
x2

当且仅当y=x-y,即x=2y①时取等号,
2
x3
+class="stub"12
x2
=
2
2
x3+
2
2
x3
+class="stub"4
x2
+class="stub"4
x2
+class="stub"4
x2
≥5
5
2
2
x3
2
2
x3•class="stub"4
x2
•class="stub"4
x2
•class="stub"4
x2
=5×2=10,
当且仅当
2
2
x3=class="stub"4
x2
②时取等号,
由①②得x=
2
,y=
2
2

所以
2
x3+class="stub"3
xy-y2
的最小值为10.
故答案为:10.

更多内容推荐