优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 设f(x)的定义域为(0,+∞),f(x)的导函数为f'(x),且对任意正数x均有f′(x)>f(x)x,(1)判断函数F(x)=f(x)x在(0,+∞)上的单调性;(2)设x1,x2∈(0
设f(x)的定义域为(0,+∞),f(x)的导函数为f'(x),且对任意正数x均有f′(x)>f(x)x,(1)判断函数F(x)=f(x)x在(0,+∞)上的单调性;(2)设x1,x2∈(0
题目简介
设f(x)的定义域为(0,+∞),f(x)的导函数为f'(x),且对任意正数x均有f′(x)>f(x)x,(1)判断函数F(x)=f(x)x在(0,+∞)上的单调性;(2)设x1,x2∈(0
题目详情
设f(x)的定义域为(0,+∞),f(x)的导函数为f'(x),且对任意正数x均有
f′(x)>
f(x)
x
,
(1)判断函数
F(x)=
f(x)
x
在(0,+∞)上的单调性;
(2)设x
1
,x
2
∈(0,+∞),比较f(x
1
)+f(x
2
)与f(x
1
+x
2
)的大小,并证明你的结论;
(3)设x
1
,x
2
,…x
n
∈(0,+∞),若n≥2,比较f(x
1
)+f(x
2
)+…+f(x
n
)与f(x
1
+x
2
+…+x
n
)的大小,并证明你的结论.
题型:解答题
难度:中档
来源:沅江市模拟
答案
(1)由于
f′(x)>
f(x)
x
得,
xf′(x)-f(x)
x
>0
,而x>0,
则xf′(x)-f(x)>0,
则F′(x)=
xf′(x)-f(x)
x
2
>0
,因此
F(x)=
f(x)
x
在(0,+∞)上是增函数.
(2)由于x1,x2∈(0,+∞),则0<x1<x1+x2,而
F(x)=
f(x)
x
在(0,+∞)上是增函数,则F(x1)<F(x1+x2),即
f(
x
1
)
x
1
<
f(
x
1
+
x
2
)
x
1
+
x
2
,
∴(x1+x2)f(x1)<x1f(x1+x2)(1),同理 (x1+x2)f(x2)<x2f(x1+x2)(2)
(1)+(2)得:(x1+x2)[f(x1)+f(x2)]<(x1+x2)f(x1+x2),而x1+x2>0,
因此 f(x1)+f(x2)<f(x1+x2).
(3)证法1:由于x1,x2∈(0,+∞),则0<x1<x1+x2+…+xn,而
F(x)=
f(x)
x
在(0,+∞)上是增函数,则F(x1)<F(x1+x2+…+xn),
即
f(
x
1
)
x
1
<
f(
x
1
+
x
2
+…+
x
n
)
x
1
+
x
2
…+
x
n
,
∴(x1+x2+…+xn)f(x1)>x1f(x1+x2+…+xn)
同理 (x1+x2+…+xn)f(x2)>x2f(x1+x2+…+xn)…(x1+x2+…+xn)f(xn)>xnf(x1+x2+…+xn)
以上n个不等式相加得:(x1+x2+…+xn)[f(x1)+f(x2)+…f(xn)]>(x1+x2+…+xn)f(x1+x2+…+xn)
而x1+x2+…+xn>0,f(x1)+f(x2)+…f(xn)>f(x1+x2+…+xn).
证法2:数学归纳法
①当n=2时,由(2)知,不等式成立;
②当n=k(n≥2)时,不等式f(x1)+f(x2)+…f(xn)>f(x1+x2+…+xn)成立,
即f(x1)+f(x2)+…f(xk)>f(x1+x2+…+xk)成立,
则当n=k+1时,f(x1)+f(x2)+…f(xk)+f(xk+1)>f(x1+x2+…+xk)+f(xk+1)
再由(2)的结论,f(x1+x2+…+xk)+f(xk+1)>f[(x1+x2+…+xk)+xk+1]f(x1+x2+…+xk)+f(xk+1)>f(x1+x2+…+xk+xk+1)
因此不等式f(x1)+f(x2)+…f(xn)>f(x1+x2+…+xn)对任意n≥2的自然数均成立
上一篇 :
设0<a<1,则函数f(x)=loga|x-1x+1|()A.
下一篇 :
已知奇函数f(x)是定义在(-3,3)上的
搜索答案
更多内容推荐
已知函数f(x)=((1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)证明:f(x)>0.-高一数学
设是上的偶函数,求的值.-高一数学
已知函数,判断的奇偶性,并加以证明.-高一数学
已知f(x)是偶函数,且f(4)=3,那么f(4)+f(-4)的值为______.-数学
已知是定义在上的奇函数,当时,,若,则实数的取值范围是()A.B.C.D.-高三数学
设f(x)定义域为D,若满足(1)f(x)在D内是单调函数(2)存在[a,b]⊆D使f(x)在x∈[a,b]值域为[a,b],则称f(x)为D上的闭函数.当f(x)=k+x+2为闭函数时,k的范围是_
定义在上的任意函数都可以表示成一个奇函数与一个偶函数之和,如果,那么()A.,B.,C.,D.,-高一数学
若函数f(x)满足f(x+10)=2f(x+9),且f(0)=1,则f(-10)=______.-数学
函数y=log2(x2-x-2)的递增区间是______.-数学
已知定义在R上连续的奇函数f(x)在(0,+∞)上的是增函数,若f(x)>f(2-x),则x的范围是()A.x>1B.x<1C.0<x<2D.1<x<2-数学
满足,且的函数可能为()Acos2xBsinCDcosx-数学
已知f(x)为二次函数,且f(-1)=2,f′(0)=0,∫01f(x)dx=-2.(1)求f(x)的解析式;(2)求f(x)在[-1,1]上的最大值与最小值.-数学
.已知函数f(x)=x2+|x-a|+1,a∈R.(1)试判断f(x)的奇偶性;(2)若-≤a≤,求f(x)的最小值.-高一数学
设,则是奇函数的充要条件是()A.B.C.D.-高三数学
已知f(x)是R上的奇函数,且当x∈(-∞,0)时,f(x)=-xlg(2-x),求f(x)的解析式.-高一数学
已知函数f(x)=axx+b,且f(1)=1,f(-2)=4.(1)求a、b的值;(2)已知定点A(1,0),设点P(x,y)是函数y=f(x)(x<-1)图象上的任意一点,求|AP|的最小值,并求此
已知f(x)=(3a-1)x+4a,x≤1logax,x>1是R上的减函数,则a的取值范围是______.-数学
若函数在区间上的图象为连续不断的一条曲线,则下列说法正确的是()A.若,不存在实数使得;B.若,存在且只存在一个实数使得;C.若,有可能存在实数使得;D.若,有可能不存在实-高一数学
对,定义,例,则函数是()A奇函数B偶函数C既是奇函数又是偶函数D非奇非偶函数-高一数学
若函数f(x)=a-log3x的图象经过点(1,1),则f-1(-8)=______.-数学
已知函数f(x)=tanπ3x,x<2010x-2010,x>2010,则f[f(2013)]=______.-数学
已知函数f(x)=(x+2)2x<00x=0(x-2)2x>0,(1)写出f(x)的单调区间;(2)若f(x)=16,求相应x的值.-数学
已知定义域为R的函数是奇函数。(1)求a,b的值;(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围。-高一数学
定义在R上的偶函数f(x)满足f(x+1)=﹣f(x),且在[﹣1,0]上单调递增,a=f(3),大小关系是[]A.a>b>cB.a>c>bC.b>c>aD.c>b>a-高三数学
设是上的奇函数,,当时,,则。-高一数学
已知函数且,(1)求的值;(2)判定的奇偶性;(3)判断在上的单调性,并给予证明.-高一数学
已知函数f(x)=2x+1,x∈N*.若∃x0,n∈N*,使f(x0)+f(x0+1)+…+f(x0+n)=63成立,则称(x0,n)为函数f(x)的一个“生成点”.函数f(x)的“生成点”共有()A
函数的零点个数为.-高一数学
已知函数(Ⅰ)判定函数的奇偶性;(Ⅱ)求函数的值域。-高三数学
已知函数f(x)=x2+2x(x≥0)g(x)(x<0)为奇函数,则f(g(-1))=()A.-20B.-18C.-15D.17-数学
给定函数①y=x-12,②y=2x2-3x+3,③y=log12|1-x|,④y=sinπx2,其中在(0,1)上单调递减的个数为()A.0B.1个C.2个D.3个-数学
将函数f(x)=x3的图象按向量a平移后得到函数g(x)的图象,若函数g(x)满足g(2+x)+g(2-x)=2,则向量a的坐标是()A.(2,1)B.(-2,-1)C.(2,2)D.(1,2)-数学
函数f(x)=x+2x()A.是奇函数,但不是偶函数B.是偶函数,但不是奇函数C.既是奇函数,又是偶函数D.既不是奇函数,又不是偶函数-数学
已知函数,g(x)=ax3+cx2+bx+d都是奇函数,其中a,b,c,d∈Z,且f(1)=2,f(2)<3,(1)求a,b,c,d的值;(2)求证:g(x)在R上是增函数。-高一数学
已知是定义在R上的奇函数,且为偶函数,对于函数有下列几种描述①是周期函数②是它的一条对称轴③是它图象的一个对称中心④当时,它一定取最大值其中描述正确的是()A.①②B.①③C.②④-高三数学
已知a>0,下列函数中,在区间(0,a)上一定是减函数的是()A.f(x)=ax+bB.f(x)=x2-2ax+1C.f(x)=axD.f(x)=logax-数学
函数f(x)=loga(a>0且a≠1),f(2)=3,则f(-2)的值为__________.-高一数学
设f(x)=1+x21-x2,则f(12)+f(13)+f(2)+f(3)=()A.3512B.-3512C.1D.0-数学
已知已知函数f(x)=x3+3,若f(lga)=4,则f(lg1a)的值等于______.-数学
已知函数是奇函数,又,,,求、、的值.-高一数学
已知三个正整数x,y,z的最小公倍数是300,并且,则方程组的解(x,y,z)=。-高一数学
已知函数f(x)=ax+bx+c(a>0)的图象在点(1,f(1))处的切线方程为y=x-1.(I)用a表示出b,c;(II)若f(x)≥lnx在[1,+∞)上恒成立,求a的取值范围.-数学
当x∈(1,2)时,不等式x2+1<2x+logax恒成立,则实数a的取值范围为()A.(0,1)B.(1,2]C.(1,2)D.[2,+∞)-数学
下列函数中,奇函数的个数是()①y=ax+1ax-1②y=lg(1-x2)|x+3|-3③y=|x|x④y=loga1+x1-x.A.1B.2C.3D.4-数学
设是定义在上的奇函数,且对任意,当时,都有.(Ⅰ)求实数的值;(Ⅱ)解不等式.-高三数学
若函数,且,则()A.-26B.-18C.-10D.10-高一数学
函数f(x)的定义域为D,若对任意的x1、x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为“非减函数”.设函数g(x)在[0,1]上为“非减函数”,且满足以下三个条件:(
f(x)=|x+2|+1,g(x)=ax,对于任意的x∈R,不等式f(x)≥g(x)恒成立,则实数a的取值范围是______.-数学
若对于任意的实数x,ax2+2x+1>0恒成立,则实数a的取值范围是______.-数学
设函数f(x)=2x,x≥0f(x+1),x<0,则f(-12)=______.-数学
返回顶部
题目简介
设f(x)的定义域为(0,+∞),f(x)的导函数为f'(x),且对任意正数x均有f′(x)>f(x)x,(1)判断函数F(x)=f(x)x在(0,+∞)上的单调性;(2)设x1,x2∈(0
题目详情
(1)判断函数F(x)=
(2)设x1,x2∈(0,+∞),比较f(x1)+f(x2)与f(x1+x2)的大小,并证明你的结论;
(3)设x1,x2,…xn∈(0,+∞),若n≥2,比较f(x1)+f(x2)+…+f(xn)与f(x1+x2+…+xn)的大小,并证明你的结论.
答案
则xf′(x)-f(x)>0,
则F′(x)=
(2)由于x1,x2∈(0,+∞),则0<x1<x1+x2,而F(x)=
∴(x1+x2)f(x1)<x1f(x1+x2)(1),同理 (x1+x2)f(x2)<x2f(x1+x2)(2)
(1)+(2)得:(x1+x2)[f(x1)+f(x2)]<(x1+x2)f(x1+x2),而x1+x2>0,
因此 f(x1)+f(x2)<f(x1+x2).
(3)证法1:由于x1,x2∈(0,+∞),则0<x1<x1+x2+…+xn,而F(x)=
即
∴(x1+x2+…+xn)f(x1)>x1f(x1+x2+…+xn)
同理 (x1+x2+…+xn)f(x2)>x2f(x1+x2+…+xn)…(x1+x2+…+xn)f(xn)>xnf(x1+x2+…+xn)
以上n个不等式相加得:(x1+x2+…+xn)[f(x1)+f(x2)+…f(xn)]>(x1+x2+…+xn)f(x1+x2+…+xn)
而x1+x2+…+xn>0,f(x1)+f(x2)+…f(xn)>f(x1+x2+…+xn).
证法2:数学归纳法
①当n=2时,由(2)知,不等式成立;
②当n=k(n≥2)时,不等式f(x1)+f(x2)+…f(xn)>f(x1+x2+…+xn)成立,
即f(x1)+f(x2)+…f(xk)>f(x1+x2+…+xk)成立,
则当n=k+1时,f(x1)+f(x2)+…f(xk)+f(xk+1)>f(x1+x2+…+xk)+f(xk+1)
再由(2)的结论,f(x1+x2+…+xk)+f(xk+1)>f[(x1+x2+…+xk)+xk+1]f(x1+x2+…+xk)+f(xk+1)>f(x1+x2+…+xk+xk+1)
因此不等式f(x1)+f(x2)+…f(xn)>f(x1+x2+…+xn)对任意n≥2的自然数均成立