已知定义域为R的函数f(x)=-2x+a2x+1是奇函数,(1)求a值,并判断f(x)的单调性(不需证明);(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范

题目简介

已知定义域为R的函数f(x)=-2x+a2x+1是奇函数,(1)求a值,并判断f(x)的单调性(不需证明);(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范

题目详情

已知定义域为R的函数f(x)=
-2x+a
2x+1
是奇函数,
(1)求a值,并判断f(x)的单调性(不需证明);
(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.
题型:解答题难度:中档来源:不详

答案

(1)∵定义域为R的函数f(x)=
-2x+a
2x+1
是奇函数,
f(0)=class="stub"-1+a
2
=0

∴a=1,
f(x)=
1-2x
1+2x

经验证,f(x)为奇函数,
∴a=1,
函数f(x)为减函数.
(2)由f(t2-2t)+f(2t2-k)<0得f(t2-2t)<-f(2t2-k),
∵f(x)是奇函数,
∴f(t2-2t)<f(k-2t2),
由(1),f(x)是减函数,
∴原问题转化为t2-2t>k-2t2,
即3t2-2t-k>0对任意t∈R恒成立
∴△=4+12k<0,
k<-class="stub"1
3
即为所求.

更多内容推荐