已知x满足:2(log12x)2+7log12x+3≤0,求f(x)=(log2x2)•(log2x4)的最大值和最小值.-数学

题目简介

已知x满足:2(log12x)2+7log12x+3≤0,求f(x)=(log2x2)•(log2x4)的最大值和最小值.-数学

题目详情

已知x满足:2(log
1
2
x)2+7log
1
2
x+3≤0
,求f(x)=(log2
x
2
)•(log2
x
4
)
的最大值和最小值.
题型:解答题难度:中档来源:不详

答案

2(logclass="stub"1
2
x)2+7logclass="stub"1
2
x+3≤0
,∴class="stub"1
2
≤log2x≤3

∵求f(x)=(log2class="stub"x
2
)•(log2class="stub"x
4
)
=(log2x-1)(log2x-2)=(log2x)2-3log2x+2,
f(x)=(log2x-class="stub"3
2
)2-class="stub"1
4

f(x)max=f(x)
.
log2x=3
=2
f(x)min=f(x)
.
log2x=class="stub"3
2
=-class="stub"1
4

故求f(x)=(log2class="stub"x
2
)•(log2class="stub"x
4
)
的最大值是2,最小值是-class="stub"1
4

更多内容推荐