(1)已知函数y=2x-4(x≥2),求它的反函数.(2)根据函数单调性的定义,证明函数f(x)=-x2+1在区间[0,+∞)上是减函数.-数学

题目简介

(1)已知函数y=2x-4(x≥2),求它的反函数.(2)根据函数单调性的定义,证明函数f(x)=-x2+1在区间[0,+∞)上是减函数.-数学

题目详情

(1)已知函数y=
2x-4
(x≥2),求它的反函数.
(2)根据函数单调性的定义,证明函数f(x)=-x2+1在区间[0,+∞)上是减函数.
题型:解答题难度:中档来源:不详

答案

(1)∵y=
2x-4
(x≥2)

∴y2=2x-4,(y≥0),
x=
y2+4
2

∴函数 y=
2x-4
(x≥2)
的反函数是y=
x2+4
2
(x≥0),
(2)任取0≤x1<x2,则f(x2)-f(x1)=1-x22-1+x12
=x12-x22=(x1-x2)(x1+x2)
∵0≤x1<x2,∴x1-x2<0,x1+x2>0
∴f(x2)-f(x1)<0,即f(x2)<f(x1)
故f(x)=1-x2在[0,+∞)上为单调减函数.

更多内容推荐