若函数f(x)=2x-k•2-x2x+k•2-x(k为常数)在定义域内为奇函数,则k的值为()A.1B.-1C.±1D.0-数学

题目简介

若函数f(x)=2x-k•2-x2x+k•2-x(k为常数)在定义域内为奇函数,则k的值为()A.1B.-1C.±1D.0-数学

题目详情

若函数f(x)=
2x-k•2-x
2x+k•2-x
(k
为常数)在定义域内为奇函数,则k的值为(  )
A.1B.-1C.±1D.0
题型:单选题难度:偏易来源:洛阳模拟

答案

因为f(x)为定义域内的奇函数,
所以f(-x)=-f(x),即
2-x-k•2x
2-x+k•2x
=-
2x-k•2-x
2x+k•2-x

所以(2-x-k•2x)(2x+k•2-x)=-(2x-k•2-x)(2-x+k•2x),
所以2-x•2x+k•2-2x-k•22x-k2•2x•2-x=-2x•2-x-k•22x+•k•2-2x+k2•2-x•2x,即1-k2=-1+k2,
解得k=±1,
故选C.

更多内容推荐