已知g(x)=x2+ax+bx,x∈(0,+∞),是否存在实数a,b,使g(x)同时满足下列两个条件:(1)g(x)在(0,1)上是减函数,在[1,+∞)上是增函数;(2)g(x)的最小值是3.若存在

题目简介

已知g(x)=x2+ax+bx,x∈(0,+∞),是否存在实数a,b,使g(x)同时满足下列两个条件:(1)g(x)在(0,1)上是减函数,在[1,+∞)上是增函数;(2)g(x)的最小值是3.若存在

题目详情

已知g(x)=
x2+ax+b
x
,x∈(0,+∞),是否存在实数a,b,使g(x)同时满足下列两个条件:(1)g(x)在(0,1)上是减函数,在[1,+∞)上是增函数;(2)g(x)的最小值是3.若存在,求出a、b,若不存在,说明理由.
题型:解答题难度:中档来源:不详

答案

∵g(x)=
x2+ax+b
x
,∴g′(x)=1-class="stub"b
x2

∵g(x)在(0,1)上是减函数,在[1,+∞)上是增函数,
∴g′(1)=0,∴b=1
∵g(x)的最小值是3
∴g(1)=1+a+b=3,∴a=1
综上,a=1,b=1.

更多内容推荐