如果函数f(x)对任意的实数x,存在常数M,使得不等式|f(x)|≤M|x|恒成立,那么就称函数f(x)为有界泛函.给出下面三个函数:①f(x)=1;②f(x)=x2;③f(x)=xx2+x+1.其中

题目简介

如果函数f(x)对任意的实数x,存在常数M,使得不等式|f(x)|≤M|x|恒成立,那么就称函数f(x)为有界泛函.给出下面三个函数:①f(x)=1;②f(x)=x2;③f(x)=xx2+x+1.其中

题目详情

如果函数f(x)对任意的实数x,存在常数 M,使得不等式|f(x)|≤M|x|恒成立,那么就称函数f(x)为有界泛函.给出下面三个函数:①f(x)=1;②f(x)=x2;③f(x)=
x
x2+x+1
.其中属于有界泛函的是(  )
A.①B.②C.③D.①②③
题型:单选题难度:中档来源:汕头二模

答案

①对于f(x)=1,当x=0时,有|f(x)|=1>M×0=0,故f(x)=1不属于有界泛函;
②对于f(x)=x2,当x≠0时,有
|f(x)|
|x|
=|x|
无最大值,f(x)=x2不属于有界泛函;
③对于f(x)=class="stub"x
x2+x+1
,当x≠0时,有
|f(x)|
|x|
=|class="stub"1
x2+x+1
|
=class="stub"1
(x+class="stub"1
2
)2+class="stub"3
4
≤class="stub"4
3
,当x=0时,|f(x)|=class="stub"4
3
×0

故f(x)=class="stub"x
x2+x+1
属于有界泛函;
故选C.

更多内容推荐