定义在R上的函数f(x)满足f(-x)=-f(x),f(x-2)=f(x+2)且x∈(-1,0)时,f(x)=2x+15,则f(log220)=()A.1B.45C.-1D.-45-数学

题目简介

定义在R上的函数f(x)满足f(-x)=-f(x),f(x-2)=f(x+2)且x∈(-1,0)时,f(x)=2x+15,则f(log220)=()A.1B.45C.-1D.-45-数学

题目详情

定义在R上的函数f(x)满足f(-x)=-f(x),f(x-2)=f(x+2)且x∈(-1,0)时,f(x)=2x+
1
5
,则f(log220)=(  )
A.1B.
4
5
C.-1D.-
4
5
题型:单选题难度:偏易来源:不详

答案

∵定义在R上的函数f(x)满足f(-x)=-f(x),
∴函数f(x)为奇函数
又∵f(x-2)=f(x+2)
∴函数f(x)为周期为4是周期函数
又∵log232>log220>log216
∴4<log220<5
∴f(log220)=f(log220-4)=f(log2class="stub"5
4
)=-f(-log2class="stub"5
4
)=-f(log2class="stub"4
5

又∵x∈(-1,0)时,f(x)=2x+class="stub"1
5

∴f(log2class="stub"4
5
)=1
故f(log220)=-1
故选C

更多内容推荐