已知函数f(x)=(x-a)lnx,(a≥0).(1)当a=0时,若直线y=2x+m与函数y=f(x)的图象相切,求m的值;(2)若f(x)在[1,2]上是单调减函数,求a的最小值;(3)当x∈[1,

题目简介

已知函数f(x)=(x-a)lnx,(a≥0).(1)当a=0时,若直线y=2x+m与函数y=f(x)的图象相切,求m的值;(2)若f(x)在[1,2]上是单调减函数,求a的最小值;(3)当x∈[1,

题目详情

已知函数f(x)=(x-a)lnx,(a≥0).
(1)当a=0时,若直线y=2x+m与函数y=f(x)的图象相切,求m的值;
(2)若f(x)在[1,2]上是单调减函数,求a的最小值;
(3)当x∈[1,2e]时,|f(x)|≤e恒成立,求实数a的取值范围.(e为自然对数的底).
题型:解答题难度:中档来源:不详

答案

(1)当a=0时,f(x)=xlnx,∴f′(x)=lnx+1
∵直线y=2x+m与函数y=f(x)的图象相切,∴lnx+1=2,∴x=e
∵f(e)=e,∴切点为(e,e),∴m=-e;
(2)f′(x)=lnx+1-class="stub"a
x

∵f(x)在[1,2]上是单调减函数,
f′(x)=lnx+1-class="stub"a
x
≤0在[1,2]上恒成立
∴a≥xlnx+x在[1,2]上恒成立
令g(x)=xlnx+x,则g′(x)=lnx+2>0
∴g(x)=xlnx+x在[1,2]上单调递增
∴a≥≥g(2)=2ln2+2
∴a的最小值为2ln2+2;
(3)|f(x)|≤e等价于-e≤(x-a)lnx≤e
∴-class="stub"e
lnx
≤x-a≤class="stub"e
lnx

∴x-class="stub"e
lnx
≤a≤x+class="stub"e
lnx

设h(x)=x+class="stub"e
lnx
,t(x)=x-class="stub"e
lnx
,则t(x)max≤a≤h(x)min,
h′(x)=
xln2x-e
xln2x
,∵h′(e)=0
令s(x)=xln2x-e,x∈[1,2e],则s′(x)=ln2x+lnx>0
∴h(x)在[1,2e]上单调递增,∴h(x)min=h(e)=2e,
∵t′(x)=1+class="stub"e
xln2x
>0,∴t(x)在[1,2e]上单调递增,
∴t(x)max=t(2e)=2e-class="stub"e
ln2e

综上,2e-class="stub"e
ln2e
≤a≤2e.

更多内容推荐