设函数f(x)=a•b,其中向量a=(cosx2,sinx2)(x∈R),向量b=(cosϕ,sinϕ)(|ϕ|<π2),f(x)的图象关于直线x=π6对称.(Ⅰ)求ϕ的值;(Ⅱ)若函数y=1+sin

题目简介

设函数f(x)=a•b,其中向量a=(cosx2,sinx2)(x∈R),向量b=(cosϕ,sinϕ)(|ϕ|<π2),f(x)的图象关于直线x=π6对称.(Ⅰ)求ϕ的值;(Ⅱ)若函数y=1+sin

题目详情

设函数f(x)=
a
b
,其中向量
a
=(cos
x
2
,sin
x
2
) (x∈R),向量
b
=(cosϕ,sinϕ)(|ϕ|<
π
2
),f(x)的图象关于直线x=
π
6
对称.
(Ⅰ)求ϕ的值;
(Ⅱ)若函数y=1+sin
x
2
的图象按向量
c
=(m,n) (|m|<π)平移可得到函数y=f(x)的图象,求向量
c
题型:解答题难度:中档来源:不详

答案

(Ⅰ)f(x)=
a
b
=cosclass="stub"x
2
cosϕ+sinclass="stub"x
2
sinϕ=cos(class="stub"x
2
-ϕ),
∵f(x)的图象关于直线x=class="stub"π
6
对称,
f(class="stub"π
6
)=cos(class="stub"π
12
-φ)=cos(φ-class="stub"π
12
)=±1

φ-class="stub"π
12
=kπ
,k∈Z,又|ϕ|<class="stub"π
2
,∴ϕ=class="stub"π
12

(Ⅱ)f(x)=cos(class="stub"x
2
-class="stub"π
12
)=sin(class="stub"x
2
+class="stub"5π
12
)=sinclass="stub"1
2
(x+class="stub"5π
6
),
由y=1+sinclass="stub"x
2
平移到y=sinclass="stub"1
2
(x+class="stub"5π
6
),只需向左平移class="stub"5π
6
单位,
再向下平移1个单位,考虑到函数的周期为π,且
c
=(m,n) (|m|<π),
m=-class="stub"5π
6
,n=-1,即
c
=(-class="stub"5π
6
,-1).
另f(x)=cos(class="stub"x
2
-class="stub"π
12
)=sin(class="stub"x
2
+class="stub"5π
12
)=sinclass="stub"1
2
(x+class="stub"5π
6
),
y-1=sinclass="stub"x
2
平移到y′=sinclass="stub"1
2
(x′+class="stub"5π
6
)
,只要
x′+class="stub"5π
6
=x
y′=y-1
x′-x=-class="stub"5π
6
y′-y=-1

c
=(-class="stub"5π
6
,-1).

更多内容推荐