记数列{an}的前n项和为Sn,若{Snan}是公差为d的等差数列,则{an}为等差数列时d=______.-数学

题目简介

记数列{an}的前n项和为Sn,若{Snan}是公差为d的等差数列,则{an}为等差数列时d=______.-数学

题目详情

记数列{an}的前n项和为Sn,若{
Sn
an
}
是公差为d的等差数列,则{an}为等差数列时d=______.
题型:填空题难度:中档来源:不详

答案

{
Sn
an
}
S1
a1
=1为首项,d为公差的等差数列,
Sn
an
=1+(n-1)d,
∴Sn=an+(n-1)dan,①
Sn-1=an-1+(n-2)dan-1.②
①-②得:
an=an+(n-1)dan-an-1-(n-2)dan-1,
整理可得
(n-1)dan-(n-1)dan-1=(1-d)an-1,
假设d=0,那么
Sn
an
=1

S1=a1,S2=a1+a2=a2,
∴a1=0,∵a1为除数,不能为0,∴d≠0.
在此假设an的公差为d′,
所以有d′=
(1-d)an-1
(n-1)d

当d=1时,d′=0,an是以a1为首项,0为公差的等差数列.
当d≠1时,an-1=(n-1)class="stub"d•d′
1-d

an-an-1=class="stub"d•d′
1-d
=d′,
∴d=class="stub"1
2

此时,an是以d′为首项,d′为公差的等差数列.
综上所述,d=1,或d=class="stub"1
2

故答案为:1或class="stub"1
2

更多内容推荐