已知函数f(x)=x2+(a-1)x+b+1,当x∈[b,a]时,函数f(x)的图象关于y轴对称,数列{an}的前n项和为Sn,且Sn=f(n).(1)求数列{an}的通项公式;(2)设bn=an2n

题目简介

已知函数f(x)=x2+(a-1)x+b+1,当x∈[b,a]时,函数f(x)的图象关于y轴对称,数列{an}的前n项和为Sn,且Sn=f(n).(1)求数列{an}的通项公式;(2)设bn=an2n

题目详情

已知函数f(x)=x2+(a-1)x+b+1,当x∈[b,a]时,函数f(x)的图象关于y轴对称,数列{an}的前n项和为Sn,且Sn=f(n).
(1)求数列{an}的通项公式;
(2)设bn=
an
2n
,Tn=b1+b2+…+bn,若Tn>m,求m的取值范围.
题型:解答题难度:中档来源:不详

答案

(1)∵函数f(x)的图象关于y轴对称,
∴a-1=0,且a+b=0,解得a=1,b=-1,
∴Sn=n2,即有an=Sn-Sn-1=2n-1(n≥2).
a1=S1=1也满足,
∴an=2n-1.(5分)
(2)由(1)得bn=class="stub"2n-1
2n

∴Tn=class="stub"1
21
+class="stub"3
22
+class="stub"5
23
+…+class="stub"2n-3
2n-1
+class="stub"2n-1
2n
,①
class="stub"1
2
Tn=class="stub"1
22
+class="stub"3
23
+…+class="stub"2n-5
2n-1
+class="stub"2n-3
2n
+class="stub"2n-1
2n+1
,②
①-②得class="stub"1
2
Tn=class="stub"1
2
+class="stub"2
22
+class="stub"2
23
+…+class="stub"2
2n-1
+class="stub"2
2n
-class="stub"2n-1
2n+1

=class="stub"1
2
+(class="stub"1
2
+class="stub"1
22
+class="stub"1
23
+…+class="stub"1
2n-1
)-class="stub"2n-1
2n+1

=class="stub"3
2
-class="stub"1
2n-1
-class="stub"2n-1
2n+1

∴Tn=3-class="stub"1
2n-2
-class="stub"2n-1
2n
=3-class="stub"2n+3
2n
.(9分)
设g(n)=class="stub"2n+3
2n
,n∈N+,
则由
g(n+1)
g(n)
=
class="stub"2n+5
2n+1
class="stub"2n+3
2n
=class="stub"2n+5
2(2n+3)
=class="stub"1
2
+class="stub"1
2n+3
class="stub"1
2
+class="stub"1
5
<1,得g(n)=class="stub"2n+3
2n
(n∈N+)随n的增大而减小,
∴g(n)≤g(1),
即Tn≥3-class="stub"2+3
2
=class="stub"1
2

又Tn>m恒成立,
∴m<class="stub"1
2
.(12分)

更多内容推荐