已知数列{an}是等差数列,a3=10,a6=22,数列{bn}的前n项和是Sn,且Sn+13bn=1.(I)求数列{an}的通项公式;(II)求证:数列{bn}是等比数列.-数学

题目简介

已知数列{an}是等差数列,a3=10,a6=22,数列{bn}的前n项和是Sn,且Sn+13bn=1.(I)求数列{an}的通项公式;(II)求证:数列{bn}是等比数列.-数学

题目详情

已知数列{an}是等差数列,a3=10,a6=22,数列{bn}的前n项和是Sn,且Sn+
1
3
bn=1

(I)求数列{an}的通项公式;
(II)求证:数列{bn}是等比数列.
题型:解答题难度:中档来源:昌平区一模

答案

(I)由已知,∵数列{an}是等差数列,a3=10,a6=22,
a1+2d=10
a1+5d=22.
,解得 a1=2,d=4.
∴an=2+(n-1)×4=4n-2.…(6分)
(II)证明:由于Sn=1-class="stub"1
3
bn
,①
令n=1,得b1=1-class="stub"1
3
b1
,解得b1=class="stub"3
4

当n≥2时,Sn-1=1-class="stub"1
3
bn-1

①-②得bn=class="stub"1
3
bn-1-class="stub"1
3
bn

bn=class="stub"1
4
bn-1

b1=class="stub"3
4
≠0
,∴
bn
bn-1
=class="stub"1
4

∴数列{bn}是以class="stub"3
4
为首项,class="stub"1
4
为公比的等比数列.…(13分)

更多内容推荐