已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)求a1+a4+a7+…+a3n-2.-数学

题目简介

已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)求a1+a4+a7+…+a3n-2.-数学

题目详情

已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)求a1+a4+a7+…+a3n-2
题型:解答题难度:中档来源:不详

答案

(I)设等差数列{an}的公差为d≠0,
由题意a1,a11,a13成等比数列,∴
a211
=a1a13

(a1+10d)2=a1(a1+12d),化为d(2a1+25d)=0,
∵d≠0,∴2×25+25d=0,解得d=-2.
∴an=25+(n-1)×(-2)=-2n+27.
(II)由(I)可得a3n-2=-2(3n-2)+27=-6n+31,可知此数列是以25为首项,-6为公差的等差数列.
∴Sn=a1+a4+a7+…+a3n-2=
n(a1+a3n-2)
2

=
n(25-6n+31)
2

=-3n2+28n.

更多内容推荐