设数列{an}与{bn}满足:对任意n∈N*,都有ban-2n=(b-1)Sn,bn=an-n•2n-1.其中Sn为数列{an}的前n项和.(1)当b=2时,求数列{an}与{bn}的通项公式;(2)

题目简介

设数列{an}与{bn}满足:对任意n∈N*,都有ban-2n=(b-1)Sn,bn=an-n•2n-1.其中Sn为数列{an}的前n项和.(1)当b=2时,求数列{an}与{bn}的通项公式;(2)

题目详情

设数列{an}与{bn}满足:对任意n∈N*,都有ban-2n=(b-1)Snbn=an-n•2n-1.其中Sn为数列{an}的前n项和.
(1)当b=2时,求数列{an}与{bn}的通项公式;
(2)当b≠2时,求数列{an}的前n项和Sn
题型:解答题难度:中档来源:闸北区二模

答案

由题意知a1=2,且ban-2n=(b-1)Snban+1-2n+1=(b-1)Sn+1
两式相减得b(an+1-an)-2n=(b-1)an+1
an+1=ban+2n
(1)当b=2时,由①知an+1=2an+2n
于是an+1-(n+1)•2n=2an+2n-(n+1)•2n=2(an-n•2n-1)
a1-1•2n-1=1≠0,所以{an-n•2n-1}是首项为1,公比为2的等比数列.
故知,bn=2n-1
再由bn=an-n•2n-1,得an=(n+1)2n-1
(2)当b≠2时,由①得an+1-class="stub"1
2-b
2n+1=ban+2n-class="stub"1
2-b
2n+1
=b(an-class="stub"1
2-b
2n)

若b=0,Sn=2n
若b=1,an=2nSn=2n+1-2
若b≠0、1,数列{an-class="stub"1
2-b
2n}
是以
2(1-b)
2-b
为首项,以b为公比的等比数列,
an-class="stub"1
2-b
2n=
2(1-b)
2-b
bn-1
an=class="stub"1
2-b
[2n+(2-2b)bn-1]
Sn=class="stub"1
2-b
(2+22+23+…+2n)+
2(1-b)
2-b
(1+b1+b2+…+bn-1)

Sn=
2(2n-bn)
2-b

b=1时,Sn=2n+1-2符合上式
所以,当b≠0时,Sn=
2(2n-bn)
2-b

当b=0时,Sn=2n

当n=1时,S1=a1=2
当n≥2时,∵ban-2n=(b-1)Snb(Sn-Sn-1)-2n=(b-1)Sn
Sn=bSn-1+2n
若b=0,Sn=2n
若b≠0,两边同除以2n得
Sn
2n
=class="stub"b
2
Sn-1
2n-1
+1

Sn
2n
+m=class="stub"b
2
Sn-1
2n-1
+1+m
,即
Sn
2n
+m=class="stub"b
2
•(
Sn-1
2n-1
+class="stub"2+2m
b
)

m=class="stub"2+2m
b
m=class="stub"2
b-2
{
Sn
2n
+class="stub"2
b-2
}
是以class="stub"b
b-2
为首项,class="stub"b
2
为公比的等比数列
Sn
2n
+class="stub"2
b-2
=class="stub"b
b-2
•(class="stub"b
2
)n-1

所以,当b≠0时,Sn=
2(2n-bn)
2-b

更多内容推荐