数列{an}满足a1=1,a2=2,an+2=(1+cos2nπ2)an+sin2nπ2,n=1,2,3,….(1)求a3,a4并求数列{an}的通项公式;(2)设bn=a2n-1a2n,Sn=b1+

题目简介

数列{an}满足a1=1,a2=2,an+2=(1+cos2nπ2)an+sin2nπ2,n=1,2,3,….(1)求a3,a4并求数列{an}的通项公式;(2)设bn=a2n-1a2n,Sn=b1+

题目详情

数列{an}满足a1=1,a2=2,an+2=(1+cos2
2
)an+sin2
2
,n=1,2,3,….
(1)求a3,a4并求数列{an}的通项公式;
(2)设bn=
a2n-1
a2n
,Sn=b1+b2+…+bn.证明:当n≥6时,|Sn-2|<
1
n
题型:解答题难度:中档来源:湖南

答案

(1)因为a1=1,a2=2,
所以a3=(1+cos2class="stub"π
2
)a1+sin2class="stub"π
2
=a1+1=2,
a4=(1+cos2π)a2+sin2π=2a2=4.
一般地,当n=2k-1(k∈N*)时,a2k+1=[1+cos2
(2k-1)π
2
]a2k-1+sin2
(2k-1)π
2
=a2k-1+1,即a2k+1-a2k-1=1.
所以数列{a2k-1}是首项为1、公差为1的等差数列,
因此a2k-1=k.
当n=2k(k∈N*)时,a2k+2=(1+cos2class="stub"2kπ
2
)a2k+sin2class="stub"2kπ
2
=2a2k.
所以数列{a2k}是首项为2、公比为2的等比数列,
因此a2k=2k.
故数列{an}的通项公式为
an=
class="stub"n+1
2
,n=2k-1(k∈N*)
2class="stub"n
2
,n=2k(k∈N*)

(2)由(1)知,bn=
a2n-1
a2n
=class="stub"n
2n

所以Sn=class="stub"1
2
+class="stub"2
22
+class="stub"3
23
+…+class="stub"n
2n
,①
class="stub"1
2
Sn=class="stub"1
22
+class="stub"2
23
+class="stub"3
24
+…+class="stub"n
2n^+
1
,②
①-②得,class="stub"1
2
Sn=class="stub"1
2
+class="stub"1
22
+class="stub"1
23
+…+class="stub"1
2n
-class="stub"n
2n+1
=
class="stub"1
2
[1-(class="stub"1
2
)
n
]
1-class="stub"1
2
-class="stub"n
2n+1
=1-class="stub"1
2n
-class="stub"n
2n+1

所以Sn=2-class="stub"1
2n-1
-class="stub"n
2n
=2-class="stub"n+2
2n

要证明当n≥6时,|Sn-2|<class="stub"1
n
成立,只需证明当n≥6时,
n(n+2)
2n
<1成立.
(1)当n=6时,
6×(6+2)
26
=class="stub"48
64
=class="stub"3
4
<1成立.
(2)假设当n=k(k≥6)时不等式成立,即
k(k+2)
2k
<1.
则当n=k+1时,
(k+1)(k+3)
2k+1
=
k(k+2)
2k
×
(k+1)(k+3)
2k(k+2)
(k+1)(k+3)
(k+2)•2k
<1.
由(1)、(2)所述,当n≥6时,
n(n+2)
2n
<1.
即当n≥6时,|Sn-2|<class="stub"1
n

更多内容推荐