已知点(1,13)是函数f(x)=ax(a>0,且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足:Sn-Sn-1=Sn+Sn-1

题目简介

已知点(1,13)是函数f(x)=ax(a>0,且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足:Sn-Sn-1=Sn+Sn-1

题目详情

已知点(1,
1
3
)是函数f(x)=ax(a>0,且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足:Sn-Sn-1=
Sn
+
Sn-1
(n≥2).
(1)求数列{an}和{bn}的通项公式;
(2)若数列{cn}的通项cn=bn•(
1
3
)n
,求数列{cn}的前n项和Rn
(3)若数列{
1
bnbn+1
}前n项和为Tn,问Tn
1000
2009
的最小正整数n是多少?
题型:解答题难度:中档来源:惠州模拟

答案

(1)因为点(1,class="stub"1
3
)是函数f(x)=ax(a>0,且a≠1)的图象上一点,
所以f(1)=a=class="stub"1
3
,所以,f(x)=(class="stub"1
3
)x

因为等比数列{an}的前n项和为f(n)-c,
所以a1=f(1)-c=class="stub"1
3
-c

a2=[f(2)-c]-[f(1)-c]=(class="stub"1
3
)2-c-class="stub"1
3
+c=-class="stub"2
9

a3=[f(3)-c]-[f(2)-c]=(class="stub"1
3
)3-c-(class="stub"1
3
)2+c=-class="stub"2
27

又数列{an}成等比数列,所以,a1=
a22
a3
=
class="stub"4
81
-class="stub"2
27
=-class="stub"2
3
=class="stub"1
3
-c
,所以c=1.
所以class="stub"1
3
-1=-class="stub"2
3

又公比q=
a3
a2
=
-class="stub"2
27
-class="stub"2
9
=class="stub"1
3

所以an=-class="stub"2
3
(class="stub"1
3
)n-1=-2(class="stub"1
3
)n

由数列{bn}的前n项和满足Sn-Sn-1=
Sn
+
Sn-1
(n≥2).
(
Sn
-
Sn-1
)(
Sn
+
Sn-1
)=
Sn
+
Sn-1
  (n≥2),
又bn>0,
Sn
>0
,所以
Sn
-
Sn-1
=1

所以,数列{
Sn
}构成一个首项为1公差为1的等差数列,
Sn
=1+(n-1)×1=n
,所以Sn=n2
当n≥2时,bn=Sn-Sn-1=n2-(n-1)2=2n-1
满足b1=c=1.
所以,bn=2n-1(n∈N*)
(2)由cn=bn(class="stub"1
3
)n=(2n-1)(class="stub"1
3
)n

所以Rn=c1+c2+c3+…+cn=1×(class="stub"1
3
)1+3×(class="stub"1
3
)2+5×(class="stub"1
3
)3+…+(2n-1)×(class="stub"1
3
)n

两边同时乘以class="stub"1
3
得:
class="stub"1
3
Rn=1×(class="stub"1
3
)2+3×(class="stub"1
3
)3+5×(class="stub"1
3
)4
+…+(2n-3)×(class="stub"1
3
)n+(2n-1)×(class="stub"1
3
)n+1

①式减②式得:
class="stub"2
3
Rn=class="stub"1
3
+2[(class="stub"1
3
)2+(class="stub"1
3
)3+(class="stub"1
3
)4+…+(class="stub"1
3
)n]
-(2n-1)×(class="stub"1
3
)n+1


化简得:class="stub"2
3
Rn=class="stub"1
3
+2×
(class="stub"1
3
)2[1-(class="stub"1
3
)n-1]
1-class="stub"1
3
-(2n-1)×(class="stub"1
3
)n+1
=class="stub"2
3
-
2(n+1)
3
×(class="stub"1
3
)n


所以Rn=1-class="stub"n+1
3n

(3)Tn=class="stub"1
b1b2
+class="stub"1
b2b3
+class="stub"1
b3b4
+…+class="stub"1
bnbn+1

=class="stub"1
1×3
+class="stub"1
3×5
+class="stub"1
5×7
+…+class="stub"1
(2n-1)(2n+1)

=class="stub"1
2
(1-class="stub"1
3
)+class="stub"1
2
(class="stub"1
3
-class="stub"1
5
)+class="stub"1
2
(class="stub"1
5
-class="stub"1
7
)+…+class="stub"1
2
(class="stub"1
2n-1
-class="stub"1
2n+1
)

=class="stub"1
2
(1-class="stub"1
2n+1
)=class="stub"n
2n+1

Tn=class="stub"n
2n+1
>class="stub"1000
2009
,得n>class="stub"1000
9
,所以,满足Tn>class="stub"1000
2009
的最小正整数为112.

更多内容推荐