已知:如图,在△ABC中,D是BC边上的一点,连接AD,取AD的中点E,过点A作BC的平行线与CE的延长线交于点F,连接DF.(1)求证:AF=DC;(2)若AD=CF,试判断四边形AFDC是什么样的

题目简介

已知:如图,在△ABC中,D是BC边上的一点,连接AD,取AD的中点E,过点A作BC的平行线与CE的延长线交于点F,连接DF.(1)求证:AF=DC;(2)若AD=CF,试判断四边形AFDC是什么样的

题目详情

已知:如图,在△ABC中,D是BC边上的一点,连接AD,取AD的中点E,过点A作BC的平行线与CE的延长线交于点F,连接DF.
(1)求证:AF=DC;
(2)若AD=CF,试判断四边形AFDC是什么样的四边形?并证明你的结论.360优课网
题型:解答题难度:中档来源:不详

答案

证明:(1)∵AFDC,
∴∠AFE=∠DCE,
又∵∠AEF=∠DEC(对顶角相等),AE=DE(E为AD的中点),
∴△AEF≌△DEC(AAS),
∴AF=DC;

(2)矩形.
由(1),有AF=DC且AFDC,
∴四边形AFDC是平行四边形,
又∵AD=CF,
∴AFDC是矩形(对角线相等的平行四边形是矩形).

更多内容推荐