给出下列命题:①存在实数x,使得sinx+cosx=π3;②函数y=sin2x的图象向右平移π4个单位,得到y=sin(2x+π4)的图象;③函数y=sin(23x-72π)是偶函数;④已知α,β是锐

题目简介

给出下列命题:①存在实数x,使得sinx+cosx=π3;②函数y=sin2x的图象向右平移π4个单位,得到y=sin(2x+π4)的图象;③函数y=sin(23x-72π)是偶函数;④已知α,β是锐

题目详情

给出下列命题:
①存在实数x,使得sinx+cosx=
π
3

②函数y=sin2x的图象向右平移
π
4
个单位,得到y=sin(2x+
π
4
)
的图象;
③函数y=sin(
2
3
x-
7
2
π)
是偶函数;
④已知α,β是锐角三角形ABC的两个内角,则sinα>cosβ.
其中正确的命题的个数为______.
题型:填空题难度:中档来源:不详

答案

sinx+cosx∈[-
2
2
],class="stub"π
3
[-
2
2
],故①正确;
将函数y=sin2x的图象向右平移class="stub"π
4
个单位,得到y=sin[2(x-class="stub"π
4
)]
的图象.故②错误;
函数y=sin(class="stub"2
3
x-class="stub"7
2
π)
=com(class="stub"2
3
x)
是偶函数,故③正确;
已知α,β是锐角三角形ABC的两个内角,则α+β>class="stub"π
2
,则α>class="stub"π
2
,sinα>sin(class="stub"π
2
-β)
=cosβ,故④正确
故答案为:3

更多内容推荐