已知命题:p:“∀x∈[1,2],x2-a≥0”,命题q:“∃x∈R,x2+2ax+2-a=0”,若“p且q”是真命题,则实数a的取值范围是()A.{a|a≤-2或a=1}B.{a|a≥1}C.{a|

题目简介

已知命题:p:“∀x∈[1,2],x2-a≥0”,命题q:“∃x∈R,x2+2ax+2-a=0”,若“p且q”是真命题,则实数a的取值范围是()A.{a|a≤-2或a=1}B.{a|a≥1}C.{a|

题目详情

已知命题:p:“∀x∈[1,2],x2-a≥0”,命题q:“∃x∈R,x2+2ax+2-a=0”,若“p且q”是真命题,则实数a的取值范围是(  )
A.{a|a≤-2或a=1}B.{a|a≥1}
C.{a|a≤-2或1≤a≤2}D.{a|-2≤a≤1}
题型:单选题难度:偏易来源:河北区一模

答案

命题:p:“∀x∈[1,2],x2-a≥0”,得a≤1;
命题q:“∃x∈R,x2+2ax+2-a=0”,得△≥0,解得a≥1或a≤-2
∵“p且q”是真命题
∴a≤-2或a=1
故选A

更多内容推荐