已知数列{an}的前n项和Sn满足:Sn=t(Sn-an+1)(t>0),且4a3是a1与2a2的等差中项.(Ⅰ)求t的值及数列{an}的通项公式;(Ⅱ)设bn=2n+1an,求数列{bn}的前n项和

题目简介

已知数列{an}的前n项和Sn满足:Sn=t(Sn-an+1)(t>0),且4a3是a1与2a2的等差中项.(Ⅰ)求t的值及数列{an}的通项公式;(Ⅱ)设bn=2n+1an,求数列{bn}的前n项和

题目详情

已知数列{an}的前n项和Sn满足:Sn=t(Sn-an+1)(t>0),且4a3是a1与2a2的等差中项.
(Ⅰ)求t的值及数列{an}的通项公式;
(Ⅱ)设bn=
2n+1
an
,求数列{bn}的前n项和Tn
题型:解答题难度:中档来源:宿州三模

答案

(Ⅰ)当n=1时,S1=t(S1-a1+1),所以a1=t,
当n≥2时,Sn=t(Sn-an+1)①
Sn-1=t(Sn-1-an-1+1),②
①-②,得an=t•an-1,即
an
an-1
=t

故{an}是首项a1=t,公比等于t的等比数列,所以an=tn,…(4分)
a2=t2a3=t3
由4a3是a1与2a2的等差中项,可得8a3=a1+2a2,即8t3=t+2t2,
因t>0,整理得8t2-2t-1=0,解得t=class="stub"1
2
或t=-class="stub"1
4
(舍去),
所以t=class="stub"1
2
,故an=class="stub"1
2n
.…(6分)
(Ⅱ)由(Ⅰ),得bn=class="stub"2n+1
an
=(2n+1)×2n,
所以Tn=3×2+5×22+7×23+…+(2n-1)×2n-1+(2n+1)×2n,③
2Tn=3×22+5×23+7×24+…+(2n-1)×2n+(2n+1)×2n+1,④
③-④,得-Tn=3×2+2(22+23+…+2n)-(2n+1)×2n+1      …(8分)
=-2+2n+2-(2n+1)×2n+1=-2-(2n-1)×2n+1…(11分)
所以Tn=2+(2n-1)×2n+1.…(12分)

更多内容推荐