(x2+1)(x+1)9=a0+a1x+a2x2+…+a11x11,则a1+a2+…+a10的值为()A.1025B.1024C.1023D.1022-数学

题目简介

(x2+1)(x+1)9=a0+a1x+a2x2+…+a11x11,则a1+a2+…+a10的值为()A.1025B.1024C.1023D.1022-数学

题目详情

(x2+1)(x+1)9=a0+a1x+a2x2+…+a11x11,则a1+a2+…+a10的值为(  )
A.1025B.1024C.1023D.1022
题型:单选题难度:中档来源:不详

答案

当x=1时,a0+a1+…+a11=2×29=1024
当x=0时,a0=1,由题意可知a11=1,
所以a1+a2+…+a10=1024-1-1=1022.
故选D.

更多内容推荐