如图,已知在侧棱垂直于底面三棱柱ABC-A1B1C1中,AC=3,AB=5,cos∠CAB=35,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1(2)求证:AC1∥平面CDB1(3)求三棱锥A

题目简介

如图,已知在侧棱垂直于底面三棱柱ABC-A1B1C1中,AC=3,AB=5,cos∠CAB=35,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1(2)求证:AC1∥平面CDB1(3)求三棱锥A

题目详情

如图,已知在侧棱垂直于底面三棱柱ABC-A1B1C1中,AC=3,AB=5,cos∠CAB=
3
5
,AA1=4,点D是AB的中点.
(1)求证:AC⊥BC1
(2)求证:AC1平面CDB1
(3)求三棱锥A1-B1CD的体积.
题型:解答题难度:中档来源:不详

答案

(1)证明:在△ABC中,由余弦定理得BC=4,∴△ABC为直角三角形,∴AC⊥BC.
又∵CC1⊥面ABC,∴CC1⊥AC,CC1∩BC=C,∴AC⊥面BCC1∴AC⊥BC1.
(2)证明:设B1C交BC1于点E,则E为BC1的中点,连接DE,则DE为△ABC1的中位线,
则在△ABC1中,DEAC1,又DE⊂面CDB1,则AC1面B1CD.
(3)在△ABC中过C作CF⊥AB垂足为F,
由面ABB1A1⊥面ABC知,CF⊥面ABB1A1,∴VA1-B1CD=VC-A1DB1
S△DA1B1=class="stub"1
2
A1B1•AA1=5×4×class="stub"1
2
=10
CF=class="stub"AC•BC
AB
=class="stub"3×4
5
=class="stub"12
5

VA1-B1CD=class="stub"1
3
×10×class="stub"12
5
=8

更多内容推荐